论文标题

PL-VIN:实时单眼视觉惯性大满贯,点和线特征

PL-VINS: Real-Time Monocular Visual-Inertial SLAM with Point and Line Features

论文作者

Fu, Qiang, Wang, Jialong, Yu, Hongshan, Ali, Islam, Guo, Feng, He, Yijia, Zhang, Hong

论文摘要

利用线路功能以提高基于点的视觉惯性大满贯(VIN)的本地化精度,因为它们在场景结构上提供了其他约束,因此引起了人们的兴趣。但是,在将线路功能合并到VIN中时的实时性能尚未得到解决。本文介绍了PL-VIN,这是一种基于实时优化的单眼VIN方法,具有点和线特征,它是基于最新基于点的Vins-Mono \ cite {vins}开发的。我们观察到当前的作品使用LSD \ cite {LSD}算法提取行特征。但是,LSD是为场景形状表示而不是姿势估计问题而设计的,由于其高计算成本,这成为实时性能的瓶颈。在本文中,通过研究隐藏的参数调整和长度拒绝策略来提出修改的LSD算法。修改后的LSD至少可以运行三倍的LSD。此外,通过用Plücker坐标表示空间线,按照点对线距离对线估计中的残差误差进行了建模,然后通过迭代更新PLücker坐标的最小四参数正态表示来最小化。公共基准数据集中的实验表明,我们方法的本地化误差比同一姿势更新频率下的VINS-MONO少12-16 \%。为了获得社区的利益,我们的方法的源代码可在以下网址获得:https://github.com/cnqiangfu/pl-vins。

Leveraging line features to improve localization accuracy of point-based visual-inertial SLAM (VINS) is gaining interest as they provide additional constraints on scene structure. However, real-time performance when incorporating line features in VINS has not been addressed. This paper presents PL-VINS, a real-time optimization-based monocular VINS method with point and line features, developed based on the state-of-the-art point-based VINS-Mono \cite{vins}. We observe that current works use the LSD \cite{lsd} algorithm to extract line features; however, LSD is designed for scene shape representation instead of the pose estimation problem, which becomes the bottleneck for the real-time performance due to its high computational cost. In this paper, a modified LSD algorithm is presented by studying a hidden parameter tuning and length rejection strategy. The modified LSD can run at least three times as fast as LSD. Further, by representing space lines with the Plücker coordinates, the residual error in line estimation is modeled in terms of the point-to-line distance, which is then minimized by iteratively updating the minimum four-parameter orthonormal representation of the Plücker coordinates. Experiments in a public benchmark dataset show that the localization error of our method is 12-16\% less than that of VINS-Mono at the same pose update frequency. %For the benefit of the community, The source code of our method is available at: https://github.com/cnqiangfu/PL-VINS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源