论文标题
具有分布式连接器张量的非常高维的神经质量模型的准确模拟
Accurate and efficient Simulation of very high-dimensional Neural Mass Models with distributed-delay Connectome Tensors
论文作者
论文摘要
本文介绍了方法和一种新颖的工具箱,该方法有效地集成了由两个基本组件指定的任何高维神经质量模型(NMM)。第一个是每个神经质量动力学的非线性随机微分方程。第二个是高度稀疏的三维连接组张量(CT),它沿每个连接的轴突编码连接的强度和信息传输的延迟。 RDE的半分析整合是使用每个神经质量模型的局部线性化方案完成的,这是唯一保证对原始连续时间非线性动力学的动态保真度的方案。它还无缝允许建模分布式延迟CT具有任何级别的复杂性或现实主义,如算法的摩尔 - 柔性图所示。这种易于实现包括具有分布式延迟CTS的模型。我们通过使用利用半分析表达式的模型的张量表示来实现高计算效率,以整合NMM下面的随机微分方程(RDE)。我们通过代数公式通过局部线性化离散状态方程。这种方法增加了数值集成速度和效率,这是大规模NMM模拟的关键方面。为了说明工具箱的有用性,我们既模拟了单个Zetterberg-Jansen-rit(ZJR)皮质柱和此类柱的互连人群。这些示例说明了在这些模型中修改CT的结果,尤其是通过引入分布式延迟。我们为工具箱提供一个开源MATLAB实时脚本。
This paper introduces methods and a novel toolbox that efficiently integrates any high-dimensional Neural Mass Models (NMMs) specified by two essential components. The first is the set of nonlinear Random Differential Equations of the dynamics of each neural mass. The second is the highly sparse three-dimensional Connectome Tensor (CT) that encodes the strength of the connections and the delays of information transfer along the axons of each connection. Semi-analytical integration of the RDE is done with the Local Linearization scheme for each neural mass model, which is the only scheme guaranteeing dynamical fidelity to the original continuous-time nonlinear dynamic. It also seamlessly allows modeling distributed delays CT with any level of complexity or realism, as shown by the Moore-Penrose diagram of the algorithm. This ease of implementation includes models with distributed-delay CTs. We achieve high computational efficiency by using a tensor representation of the model that leverages semi-analytic expressions to integrate the Random Differential Equations (RDEs) underlying the NMM. We discretized the state equation with Local Linearization via an algebraic formulation. This approach increases numerical integration speed and efficiency, a crucial aspect of large-scale NMM simulations. To illustrate the usefulness of the toolbox, we simulate both a single Zetterberg-Jansen-Rit (ZJR) cortical column and an interconnected population of such columns. These examples illustrate the consequence of modifying the CT in these models, especially by introducing distributed delays. We provide an open-source Matlab live script for the toolbox.