论文标题

多体非交叉系统中的随机相近似:十二面体水笼中的甲烷

Random-Phase Approximation in Many-Body Noncovalent Systems: Methane in a Dodecahedral Water Cage

论文作者

Modrzejewski, Marcin, Yourdkhani, Sirous, Śmiga, Szymon, Klimeš, Jiří

论文摘要

分子簇或固体能量的多体扩展(MBE)提供了一种检测和分析理论方法误差的方法,如果仅考虑系统的总能量,这些误差可能会引起人们的注意。在这方面,甲烷分子与其封闭的十二面体水笼之间的相互作用,Ch $ _4 $(H $ _2 $ O)$ _ {20} $,是对近似方法的严格测试,包括密度功能理论(DFT)近似值。对于该系统,混合和半局部性DFT近似行为不稳定,三体和四体非辅助术语既没有正确的符号也没有幅度。在这里,我们分析了不同MBE贡献中的这些定性误差在多大程度上传达给Kohn-Sham后随机相近似(RPA)。结果揭示了DFT输入状态的质量与RPA结果之间的相关性。此外,重新归一化的单身能量(RSE)校正在MBE的所有阶段都起着至关重要的作用。对于二聚体,RSE纠正了每个测试的Kohn-Sham模型的RPA限制性:广义梯度近似(GGA),Meta-GGA,(Meta-)GGA杂种以及相关水平上优化的有效潜力。值得注意的是,在RPA中包含单身人士还可以纠正三体和四体非辅助能量的错误迹象,并减轻对MBE的高阶贡献。 RPA错误由紧凑型簇的贡献主导。作为大型系统的一种可行方法,我们建议用CCSD(T)能量代替这些紧凑的贡献,并将其剩余的多体贡献总结到无穷大的超分子或周期性RPA。为了证明这种方法,我们表明,对于RPA(PBE0)+RSE,将CCSD(T)应用于二聚体和30个紧凑的氢键三聚体以使甲烷 - 水笼相互作用能量在参考值的1.6%以内。

The many-body expansion (MBE) of energies of molecular clusters or solids offers a way to detect and analyze errors of theoretical methods that could go unnoticed if only the total energy of the system was considered. In this regard, the interaction between the methane molecule and its enclosing dodecahedral water cage, CH$_4$(H$_2$O)$_{20}$, is a stringent test for approximate methods, including density-functional theory (DFT) approximations. Hybrid and semilocal DFT approximations behave erratically for this system, with three- and four-body nonadditive terms having neither the correct sign nor magnitude. Here we analyze to what extent these qualitative errors in different MBE contributions are conveyed to post-Kohn-Sham random-phase approximation (RPA). The results reveal a correlation between the quality of the DFT input states and the RPA results. Moreover, the renormalized singles energy (RSE) corrections play a crucial role in all orders of MBE. For dimers, RSE corrects the RPA underbinding for every tested Kohn-Sham model: generalized-gradient approximation (GGA), meta-GGA, (meta-)GGA hybrids, as well as the optimized effective potential at the correlated level. Remarkably, the inclusion of singles in RPA can also correct the wrong signs of three- and four-body nonadditive energies as well as mitigate the excessive higher-order contributions to the MBE. The RPA errors are dominated by the contributions of compact clusters. As a workable method for large systems, we propose to replace those compact contributions with CCSD(T) energies and to sum up the remaining many-body contributions up to infinity with supermolecular or periodic RPA. As a demonstration of this approach, we show that for RPA(PBE0)+RSE it suffices to apply CCSD(T) to dimers and 30 compact, hydrogen-bonded trimers to get the methane-water cage interaction energy to within 1.6% of the reference value.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源