论文标题

陆地行星上火山的大气甲烷不太可能,并增强甲烷作为生物签名的情况

Abundant atmospheric methane from volcanism on terrestrial planets is unlikely and strengthens the case for methane as a biosignature

论文作者

Wogan, Nicholas, Krissansen-Totton, Joshua, Catling, David C.

论文摘要

已经提出了丰富的甲烷和二氧化碳的不平衡组合,作为一种有希望的系外行星生物签名,可以通过即将到来的望远镜(例如詹姆斯·韦伯(James Webb)太空望远镜(James Webb Space望远镜)进行检测。但是,很少有研究探讨了非生物CH4和CO2以及相关上下文线索的可能性。在这里,我们研究了岩浆火山层在陆地行星上是否可以使用热力学模型产生大气CH4和CO2。我们的模型表明,火山不太可能产生与生物通量相当的CH4通量。火山产生生物量的CH4的不可能的情况也产生了充足的一氧化碳。我们使用光化学模型表明,火山产生的高非生物CH4丰度将伴随着高CO的丰度,这可能是可检测到的假阳性诊断。总体而言,当考虑在陆地行星上产生非生物CH4的已知机制时,我们得出的结论是,当CH4丰度意味着与现代地球的生物学CH4滤光片可比的表面通量相当时,就难以解释与CO2大气CH4的观察。小型或微不足道的CO丰度增强了CH4+CO2的生物签名,因为生命很容易消耗大气中的CO,而减少火山气可能会导致CO在行星的大气中堆积。此外,适用于生活起源的火山产生的CH4大气的困难可能有利于诸如影响诱发的减少气氛之类的替代品。

The disequilibrium combination of abundant methane and carbon dioxide has been proposed as a promising exoplanet biosignature that is readily detectable with upcoming telescopes such as the James Webb Space Telescope. However, few studies have explored the possibility of non-biological CH4 and CO2 and related contextual clues. Here, we investigate whether magmatic volcanic outgassing on terrestrial planets can produce atmospheric CH4 and CO2 with a thermodynamic model. Our model suggests that volcanoes are unlikely to produce CH4 fluxes comparable to biological fluxes. Improbable cases where volcanoes produce biological amounts of CH4 also produce ample carbon monoxide. We show, using a photochemical model, that high abiotic CH4 abundances produced by volcanoes would be accompanied by high CO abundances, which could be a detectable false positive diagnostic. Overall, when considering known mechanisms for generating abiotic CH4 on terrestrial planets, we conclude that observations of atmospheric CH4 with CO2 are difficult to explain without the presence of biology when the CH4 abundance implies a surface flux comparable to modern Earth's biological CH4 flux. A small or negligible CO abundance strengthens the CH4+CO2 biosignature because life readily consumes atmospheric CO, while reducing volcanic gases likely cause CO to build up in a planet's atmosphere. Furthermore, the difficulty of volcanically-generated CH4-rich atmospheres suitable for an origin of life may favor alternatives such as impact-induced reducing atmospheres.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源