论文标题
霍尔在原始盘形成和进化中的效果
Hall Effect in Protostellar Disc Formation and Evolution
论文作者
论文摘要
最近,大厅效应在磁化密集的分子核中有效,并且可能导致在第一核相中旋转支持的盘子(RSD)的双峰形成。但是,在原始的积聚阶段,这种主导的系统如何发展尚不清楚。我们进行了2D轴对称模拟,包括霍尔效应和欧姆耗散,并根据我们的平衡化学网络计算出逼真的磁扩散率。我们发现,只有从标准的MRN尺寸分布中删除了非常小的谷物(VSG:$ \ Lessim $ 10 nm)的大量人群(VSG:$ \ Lessim $ 10 nm)才能有效。然而,随着这种增强的霍尔效应,圆盘形成的双峰性不会持续到主要积聚阶段。在反将配置($ {\bfΩ\ cdot b} <0 $)中形成的初始$ \ sim $ 40 au光盘的外部部分会变成薄薄的旋转支持的霍尔电流表,因为霍尔效应将poloidal磁场移动到了相对相对的poloidal磁场上,只留下了内在的$ \ \ \ \ bys $ \ \ byssim $ \ bysim $ 10-20-20 au u sd。在对齐配置($ {\bfΩ\ cdot b}> 0 $)中,最初抑制了圆盘的形成,但由于有效的方位角霍尔漂移而导致反旋转盘形式。随着霍尔效应在径向向外移动磁场时,反向旋转的光盘首先生长到$ \ sim $ 30 au,但只有内部$ \ lyssim $ 10 au rsd的寿命长期以来,就像在反将的情况下一样。除了删除VSG之外,宇宙射线电离速率还应低于几个10 $^{ - 16} $ s $^{ - 1} $,以使Hall效应有效地表现出光盘形成。我们得出的结论是,无论磁场的极性如何,霍尔效应都会产生小$ \ lyssim $ 10--20 au光盘,并且磁场的径向向外扩散对于盘形成和生长仍然至关重要。
The Hall effect is recently shown to be efficient in magnetized dense molecular cores, and could lead to a bimodal formation of rotationally supported discs (RSDs) in the first core phase. However, how such Hall dominated systems evolve in the protostellar accretion phase remains unclear. We carry out 2D axisymmetric simulations including Hall effect and Ohmic dissipation, with realistic magnetic diffusivities computed from our equilibrium chemical network. We find that Hall effect only becomes efficient when the large population of very small grains (VSGs: $\lesssim$10 nm) is removed from the standard MRN size distribution. With such an enhanced Hall effect, however, the bimodality of disc formation does not continue into the main accretion phase. The outer part of the initial $\sim$40 AU disc formed in the anti-aligned configuration (${\bf Ω\cdot B}<0$) flattens into a thin rotationally supported Hall current sheet as Hall effect moves the poloidal magnetic field radially inward relative to matter, leaving only the inner $\lesssim$10--20 AU RSD. In the aligned configuration (${\bf Ω\cdot B}>0$), disc formation is suppressed initially but a counter-rotating disc forms subsequently due to efficient azimuthal Hall drift. The counter-rotating disc first grows to $\sim$30 AU as Hall effect moves the magnetic field radially outward, but only the inner $\lesssim$10 AU RSD is long-lived like in the anti-aligned case. Besides removing VSGs, cosmic ray ionization rate should be below a few 10$^{-16}$ s$^{-1}$ for Hall effect to be efficient in disc formation. We conclude that Hall effect produces small $\lesssim$10--20 AU discs regardless of the polarity of the magnetic field, and that radially outward diffusion of magnetic fields remains crucial for disc formation and growth.