论文标题

极端区域变化的更多批量

More of the Bulk from Extremal Area Variations

论文作者

Bao, Ning, Cao, ChunJun, Fischetti, Sebastian, Pollack, Jason, Zhong, Yibo

论文摘要

最近显示的是,基于Alexakis,Balehowksy和Nachman的作品,它的(某些部分)具有边界的一部分的几何形状是由固定在边界固定在边界的二维盘状表面的叶面区域唯一固定的。在ADS/CFT的背景下,这意味着(一部分)四维散装几何形状可以独特地从磁盘形边界区域的纠缠熵中固定,但要受几个约束。在本说明中,我们放松了其中一些约束,特别是使极端表面的散装叶子是本地的,并消除了磁盘拓扑的约束。这些概括通过允许例如锚定在断开的渐近边界上的表面,或者在相变之后的HRT表面。我们还更深入地探索了局部叶面要求的一般性,表明即使在像Ads-vaidya这样的高度动态几何形状中,也可以满足它。

It was shown recently, building on work of Alexakis, Balehowksy, and Nachman that the geometry of (some portion of) a manifold with boundary is uniquely fixed by the areas of a foliation of two-dimensional disk-shaped surfaces anchored to the boundary. In the context of AdS/CFT, this implies that (a portion of) a four-dimensional bulk geometry can be fixed uniquely from the entanglement entropies of disk-shaped boundary regions, subject to several constraints. In this Note, we loosen some of these constraints, in particular allowing for the bulk foliation of extremal surfaces to be local and removing the constraint of disk topology; these generalizations ensure uniqueness of more of the deep bulk geometry by allowing for e.g. surfaces anchored on disconnected asymptotic boundaries, or HRT surfaces past a phase transition. We also explore in more depth the generality of the local foliation requirement, showing that even in a highly dynamical geometry like AdS-Vaidya it is satisfied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源