论文标题
低阶非线性扰动的分数拉普拉斯方程的反问题
Inverse problems for the fractional Laplace equation with lower order nonlinear perturbations
论文作者
论文摘要
我们研究具有多个非线性低阶项的分数拉普拉斯方程的逆问题。我们表明,直接问题是良好的问题,而反问题是可以解决的。更具体地说,未知的非线性可以从合适的设置下的外部测量中唯一确定。
We study the inverse problem for the fractional Laplace equation with multiple nonlinear lower order terms. We show that the direct problem is well-posed and the inverse problem is uniquely solvable. More specifically, the unknown nonlinearities can be uniquely determined from exterior measurements under suitable settings.