论文标题
2020年爆发风暴和SGR持续排放的更好的景色1935+2154
The NICER View of the 2020 Burst Storm and Persistent Emission of SGR 1935+2154
论文作者
论文摘要
我们报告了对磁铁SGR〜1935+2154的更好观察结果,涵盖了其2020年的爆发风暴和长期持续的排放演化,高达$ \ sim90 $ $ tay爆发后。在4月28日00:40:58 UTC进行的前1120〜秒中,我们检测到217次突发,对应于$> 0.2 $> 0.2 $ busts s $^{ - 1} $的爆发率。三个小时后,费率为0.008爆发s $^{ - 1} $,此后保持在相对较低的水平。 $ t_ {90} $爆发持续时间分布在840〜ms上峰值;等待时间到下一个爆发的分布与对数正态拟合,平均为2.1 s。 1-10 KEV爆发光谱非常适合黑体,平均温度为$ kt = 1.7 $ kev,$ r^2 = 53 $ km $^2 $。 $ \ sim3 $数量级上的差分突发分布分布很好地建模了power-law表格$ dn/df \ propto f^{ - 1.5 \ pm0.1} $。爆发暴风雨后,源持续的发射脉冲轮廓数小时是双峰。我们发现,爆发峰到达时间遵循脉冲相的均匀分布,尽管快速无线电爆发与源源与较亮峰相对的相对。我们测量了源从重度观测值的源旋转,涵盖第21天至39天后,$ \dotν= -3.72(3)\ times10^{ - 12} $ hz s $^{ - 1} $;一个比2014年爆发后测得的价值大2.7。最后,持续的发射通量和黑体温度在爆发的早期阶段迅速降低,40天后达到静止,而发射区域的尺寸保持不变。
We report on NICER observations of the Magnetar SGR~1935+2154, covering its 2020 burst storm and long-term persistent emission evolution up to $\sim90$ days post outburst. During the first 1120~seconds taken on April 28 00:40:58 UTC we detect over 217 bursts, corresponding to a burst rate of $>0.2$ bursts s$^{-1}$. Three hours later the rate is at 0.008 bursts s$^{-1}$, remaining at a comparatively low level thereafter. The $T_{90}$ burst duration distribution peaks at 840~ms; the distribution of waiting times to the next burst is fit with a log-normal with an average of 2.1 s. The 1-10 keV burst spectra are well fit by a blackbody, with an average temperature and area of $kT=1.7$ keV and $R^2=53$ km$^2$. The differential burst fluence distribution over $\sim3$ orders of magnitude is well modeled with a power-law form $dN/dF\propto F^{-1.5\pm0.1}$. The source persistent emission pulse profile is double-peaked hours after the burst storm. We find that the bursts peak arrival times follow a uniform distribution in pulse phase, though the fast radio burst associated with the source aligns in phase with the brighter peak. We measure the source spin-down from heavy-cadence observations covering days 21 to 39 post-outburst, $\dotν=-3.72(3)\times10^{-12}$ Hz s$^{-1}$; a factor 2.7 larger than the value measured after the 2014 outburst. Finally, the persistent emission flux and blackbody temperature decrease rapidly in the early stages of the outburst, reaching quiescence 40 days later, while the size of the emitting area remains unchanged.