论文标题

深度动量不确定性哈希

Deep Momentum Uncertainty Hashing

论文作者

Fu, Chaoyou, Wang, Guoli, Wu, Xiang, Zhang, Qian, He, Ran

论文摘要

组合优化(CO)是一个热门研究主题,因为其理论和实用性。作为一个经典的CO问题,Deep Hashing旨在从有限的离散可能性中找到每个数据的最佳代码,而离散的性质为优化过程带来了巨大的挑战。以前的方法通常通过二进制近似来缓解这一挑战,通过激活函数或正规化将二进制代码代替实现。但是,这种近似导致了真实价值与二元的近似值,从而降低了检索性能。在本文中,我们提出了一种新颖的深度不确定性哈希(DMUH)。它明确估计训练过程中的不确定性,并利用不确定性信息来指导近似过程。具体而言,我们通过测量哈希网络的输出与动量更新网络的输出之间的差异来对位级的不确定性进行建模。每个位的差异表明哈希网络对该位的近似输出的不确定性。同时,散列代码中所有位的平均差异可以视为图像级不确定性。它体现了哈希网络对相应输入图像的不确定性。在优化期间,将更高的不确定性的散列位和图像更加关注。据我们所知,这是研究哈希钻头不确定性的第一项工作。在四个数据集上进行了广泛的实验,以验证我们方法的优越性,包括CIFAR-10,NUS WIDE,MS-COCO和一百万尺度的数据集服装1M。我们的方法在所有数据集上实现了最佳性能,并以很大的利润超过了现有的最新方法。

Combinatorial optimization (CO) has been a hot research topic because of its theoretic and practical importance. As a classic CO problem, deep hashing aims to find an optimal code for each data from finite discrete possibilities, while the discrete nature brings a big challenge to the optimization process. Previous methods usually mitigate this challenge by binary approximation, substituting binary codes for real-values via activation functions or regularizations. However, such approximation leads to uncertainty between real-values and binary ones, degrading retrieval performance. In this paper, we propose a novel Deep Momentum Uncertainty Hashing (DMUH). It explicitly estimates the uncertainty during training and leverages the uncertainty information to guide the approximation process. Specifically, we model bit-level uncertainty via measuring the discrepancy between the output of a hashing network and that of a momentum-updated network. The discrepancy of each bit indicates the uncertainty of the hashing network to the approximate output of that bit. Meanwhile, the mean discrepancy of all bits in a hashing code can be regarded as image-level uncertainty. It embodies the uncertainty of the hashing network to the corresponding input image. The hashing bit and image with higher uncertainty are paid more attention during optimization. To the best of our knowledge, this is the first work to study the uncertainty in hashing bits. Extensive experiments are conducted on four datasets to verify the superiority of our method, including CIFAR-10, NUS-WIDE, MS-COCO, and a million-scale dataset Clothing1M. Our method achieves the best performance on all of the datasets and surpasses existing state-of-the-art methods by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源