论文标题
孤立的quasihomenys奇异性的整体单曲
The integral monodromy of isolated quasihomogeneous singularities
论文作者
论文摘要
从1972年开始,Orlik几乎不受欢迎的猜想对孤立的准季节奇异性的Milnor晶格的整体单构型。我们证明了所有迭代的Thom-Sebastiani总和链型奇异性和循环类型奇异性的猜想。本文的主要部分纯粹是代数。它提供了用于处理$ {\ Mathbb z} $的总和和张量产品的工具 - 具有有限订单和循环发电机的自动形态的晶格。计算涉及。他们使用单位根,环形多项式,其结果和判别因子的精细特性。
The integral monodromy on the Milnor lattice of an isolated quasihomogeneous singularity is subject of an almost untouched conjecture of Orlik from 1972. We prove this conjecture for all iterated Thom-Sebastiani sums of chain type singularities and cycle type singularities. The main part of the paper is purely algebraic. It provides tools for dealing with sums and tensor products of ${\mathbb Z}$-lattices with automorphisms of finite order and with cyclic generators. The calculations are involved. They use fine properties of unit roots, cyclotomic polynomials, their resultants and discriminants.