论文标题

Poisson-Nernst-Planck系统的阳性,能量稳定和收敛的数值方案

A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system

论文作者

Liu, Chun, Wang, Cheng, Wise, Steven M., Yue, Xingye, Zhou, Shenggao

论文摘要

在本文中,我们提出和分析了Poisson-Nernst-Nernst-Planck方程(PNP)系统的有限差数值方案。为了了解PNP模型的能量结构,我们利用了能量变化方法(ENVARA),以便可以将PNP系统重新构建为非恒定迁移率$ h^{ - 1} $梯度流,并具有奇异的对数能量潜力。为了确保独特的溶解度和能量稳定性,可以明确处理迁移率,而对数和电势扩散项都被隐式处理,因为这两个能量功能部位的凸特性。两种浓度($ n $ and $ p $)的积极性属性是在理论上建立的。这是基于一个微妙的事实,即对数术语的奇异性质围绕$ 0 $ $ $ $ $ $ 0,可以阻止数值解决方案达到奇异值,从而始终定义了数值方案。此外,这项工作还提供了最佳速率收敛分析,其中由于非线性抛物线系数,必须涉及许多高度非标准的估计。高阶渐近扩展(最高三阶时间准确性和第四阶空间准确性),粗略的误差估计(以建立$ \ ell^\ infty $以$ n $和$ n $和$ p $绑定),并且必须进行精制的误差估算,以实现这种结果。据我们所知,这项工作将是第一个为PNP系统的数值方案结合以下三个理论属性的工作:(i)独特的溶解度和积极性,(ii)能量稳定性和(iii)最佳速率收敛性。本文还提供了一些数值结果,该结果证明了所提出的数值方案的鲁棒性。

In this paper we propose and analyze a finite difference numerical scheme for the Poisson-Nernst-Planck equation (PNP) system. To understand the energy structure of the PNP model, we make use of the Energetic Variational Approach (EnVarA), so that the PNP system could be reformulated as a non-constant mobility $H^{-1}$ gradient flow, with singular logarithmic energy potentials involved. To ensure the unique solvability and energy stability, the mobility function is explicitly treated, while both the logarithmic and the electric potential diffusion terms are treated implicitly, due to the convex nature of these two energy functional parts. The positivity-preserving property for both concentrations, $n$ and $p$, is established at a theoretical level. This is based on the subtle fact that the singular nature of the logarithmic term around the value of $0$ prevents the numerical solution reaching the singular value, so that the numerical scheme is always well-defined. In addition, an optimal rate convergence analysis is provided in this work, in which many highly non-standard estimates have to be involved, due to the nonlinear parabolic coefficients. The higher order asymptotic expansion (up to third order temporal accuracy and fourth order spatial accuracy), the rough error estimate (to establish the $\ell^\infty$ bound for $n$ and $p$), and the refined error estimate have to be carried out to accomplish such a convergence result. In our knowledge, this work will be the first to combine the following three theoretical properties for a numerical scheme for the PNP system: (i) unique solvability and positivity, (ii) energy stability, and (iii) optimal rate convergence. A few numerical results are also presented in this article, which demonstrates the robustness of the proposed numerical scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源