论文标题

POMP:基于POMCP的在线运动计划,用于在室内环境中进行主动视觉搜索

POMP: Pomcp-based Online Motion Planning for active visual search in indoor environments

论文作者

Wang, Yiming, Giuliari, Francesco, Berra, Riccardo, Castellini, Alberto, Del Bue, Alessio, Farinelli, Alessandro, Cristani, Marco, Setti, Francesco

论文摘要

在本文中,我们关注的是学习具有在线设置的已知室内环境中主动视觉搜索(AV)的最佳策略的问题。我们的POMP方法用作输入代理的当前姿势(例如机器人)和RGB-D框架。任务是计划下一步使代理更靠近目标对象的行动。我们将这个问题建模为通过蒙特卡洛计划方法解决的部分可观察到的马尔可夫决策过程。这使我们能够通过迭代手头的已知场景,探索环境并同时搜索对象来决定下一步。与当前的增强学习中的艺术状态不同,POMP不需要广泛且昂贵的(时间和计算)标记的数据,因此在中小型真实情况下解决AVS时非常敏捷。我们只需要环境浮光圈的信息,通常可用的信息,或者可以轻松地从先验的单个探索中提取。我们验证了公开可用的AVD基准测试的方法,平均成功率为0.76,平均路径长度为17.1,其表现接近最接近最新技术,但没有任何培训。此外,当对象检测的质量从理想到故障变化时,我们在实验上显示了我们方法的鲁棒性。

In this paper we focus on the problem of learning an optimal policy for Active Visual Search (AVS) of objects in known indoor environments with an online setup. Our POMP method uses as input the current pose of an agent (e.g. a robot) and a RGB-D frame. The task is to plan the next move that brings the agent closer to the target object. We model this problem as a Partially Observable Markov Decision Process solved by a Monte-Carlo planning approach. This allows us to make decisions on the next moves by iterating over the known scenario at hand, exploring the environment and searching for the object at the same time. Differently from the current state of the art in Reinforcement Learning, POMP does not require extensive and expensive (in time and computation) labelled data so being very agile in solving AVS in small and medium real scenarios. We only require the information of the floormap of the environment, an information usually available or that can be easily extracted from an a priori single exploration run. We validate our method on the publicly available AVD benchmark, achieving an average success rate of 0.76 with an average path length of 17.1, performing close to the state of the art but without any training needed. Additionally, we show experimentally the robustness of our method when the quality of the object detection goes from ideal to faulty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源