论文标题

通过跟踪错误惩罚选择均值变化投资组合

Mean-variance portfolio selection with tracking error penalization

论文作者

Lefebvre, William, Loeper, Gregoire, Pham, Huyên

论文摘要

本文研究了连续时均值变化投资组合选择的变化,其中将跟踪 - 错误惩罚添加到均值差异标准中。跟踪误差项会惩罚分配控件与具有相同财富和固定权重的参考资料组合之间的距离。此类考虑的动机如下:(i)一方面,它是一种通过“将”它“拟合”到可能对市场参数不可知的参考资料组合中“拟合”的方式来鲁棒性分配均值分配; (ii)另一方面,通过考虑目标函数中的平均值差异标准来跟踪基准并提高所得投资组合的夏普比率的过程。此问题被称为McKean-Vlasov控制问题。我们为最佳投资组合策略和投资组合策略的渐近扩展提供明确的解决方案,并为跟踪误差参数的少量值提供有效的边界。最后,我们比较了通过标准均值差异分配获得的夏普比和四个不同参考资料组合的惩罚:相等的权重,最小值,相等的风险贡献和缩小的投资组合。 此比较是在模拟的拼写错误模型和对历史数据进行的回验测试上进行的。我们的结果表明,在大多数情况下,受惩罚的投资组合的表现都优于标准均值和参考资料组合。

This paper studies a variation of the continuous-time mean-variance portfolio selection where a tracking-error penalization is added to the mean-variance criterion. The tracking error term penalizes the distance between the allocation controls and a reference portfolio with same wealth and fixed weights. Such consideration is motivated as follows: (i) On the one hand, it is a way to robustify the mean-variance allocation in case of misspecified parameters, by "fitting" it to a reference portfolio that can be agnostic to market parameters; (ii) On the other hand, it is a procedure to track a benchmark and improve the Sharpe ratio of the resulting portfolio by considering a mean-variance criterion in the objective function. This problem is formulated as a McKean-Vlasov control problem. We provide explicit solutions for the optimal portfolio strategy and asymptotic expansions of the portfolio strategy and efficient frontier for small values of the tracking error parameter. Finally, we compare the Sharpe ratios obtained by the standard mean-variance allocation and the penalized one for four different reference portfolios: equal-weights, minimum-variance, equal risk contributions and shrinking portfolio. This comparison is done on a simulated misspecified model, and on a backtest performed with historical data. Our results show that in most cases, the penalized portfolio outperforms in terms of Sharpe ratio both the standard mean-variance and the reference portfolio.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源