论文标题
周期的轨道色多项式
The Orbital Chromatic Polynomial of a Cycle
论文作者
论文摘要
卡梅隆和凯比引入的轨道色多项式计数图模型的适当$λ$ - 颜色的数量一组对称。在本文中,我们为旋转组及其完整的自动形态组的轨道色多项式建立了扩展。作为一方面,我们获得了Fermat的小定理的新证明。
The orbital chromatic polynomial introduced by Cameron and Kayibi counts the number of proper $λ$-colorings of a graph modulo a group of symmetries. In this paper, we establish expansions for the orbital chromatic polynomial of the $n$-cycle for the group of rotations and its full automorphism group. As a side result, we obtain a new proof of Fermat's Little Theorem.