论文标题
普通的阿伯利亚品种,具有p驱动程度的依发性自我基础和无等性因素
An ordinary abelian variety with an etale self-isogeny of p-power degree and no isotrivial factors
论文作者
论文摘要
对于每个Prime P,我们构建了特征性P的功能场K和一个普通的Abelian品种A,而没有各向同性因素,可以承认P-Power度的依恋自我发育。结果,我们推断出,在功能领域上存在普通的阿伯利亚品种,其最大纯粹不可分割的扩展的点数不是有限生成的,这在负面的问题上回答了托马斯·斯坎伦的问题。
We construct, for every prime p, a function field K of characteristic p and an ordinary abelian variety A over K, with no isotrivial factors, that admits an etale self-isogeny of p-power degree. As a consequence, we deduce that there exist ordinary abelian varieties over function fields whose groups of points over the maximal purely inseparable extension is not finitely generated, answering in the negative a question of Thomas Scanlon.