论文标题

圆环的同态

Homomorphisms from the torus

论文作者

Jenssen, Matthew, Keevash, Peter

论文摘要

我们提供了来自离散的圆环$ \ mathbb {z} _m^n $的一组加权同构的详细概率和结构分析,其中$ m $甚至是任何固定的图表:我们表明,这些同源物的相应概率分布构成了某些随机危机的构造分布,这些分布构成了某些一定的某些独立型构成的分布。这有几个后果,包括解决方案(以强烈的形式)来猜想英语和加尔文的猜想以及卡恩和帕克的猜想。特殊案例包括针对独立集数量的尖锐渐近学和$ \ m mathbb {z} _m^n $的合适$ q $ - 颜色的数量(尤其是离散的HyperCube)。我们将进一步的应用于高度功能的研究和(广义)等级函数在离散的超立方体上,并反驳了Kahn和Lawrenz的猜想。为了证明,我们结合了来自统计物理,熵和图形容器的方法,并利用圆环的等速度和代数特性。

We present a detailed probabilistic and structural analysis of the set of weighted homomorphisms from the discrete torus $\mathbb{Z}_m^n$, where $m$ is even, to any fixed graph: we show that the corresponding probability distribution on such homomorphisms is close to a distribution defined constructively as a certain random perturbation of some dominant phase. This has several consequences, including solutions (in a strong form) to conjectures of Engbers and Galvin and a conjecture of Kahn and Park. Special cases include sharp asymptotics for the number of independent sets and the number of proper $q$-colourings of $\mathbb{Z}_m^n$ (so in particular, the discrete hypercube). We give further applications to the study of height functions and (generalised) rank functions on the discrete hypercube and disprove a conjecture of Kahn and Lawrenz. For the proof we combine methods from statistical physics, entropy and graph containers and exploit isoperimetric and algebraic properties of the torus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源