论文标题
使模型正确;光谱的信息标准
Getting the model right; an information criterion for spectroscopy
论文作者
论文摘要
对光谱过渡的强大模型拟合是许多科学领域的要求。校正后的Akaike和贝叶斯信息标准(AICC和BIC)最常用于选择最佳拟合参数。通常,AICC建模被认为过度合适(模型参数太多)和BIC不足。对于光谱建模,AICC和BIC在两个重要方面均缺乏:(a)没有根据线强度进行惩罚区别,因此接近检测阈值的弱线的参数均以同等的重要性对待,并且((b)在狭窄数据区域影响频谱线的方式没有考虑到狭窄的数据区域。在本文中,我们介绍了一个解决这些缺点的新信息标准,即“光谱信息标准”(SPIC)。光谱模拟用于比较性能。主要发现是(i)SPIC明显优于AICC的高信号到噪声数据,(ii)SPIC和AICC在较低的信号到噪声数据方面同样效果很好,尽管SPIC以较少的参数实现了这一点,并且(III)BIC表现不佳(对于此应用程序),应避免使用。新方法应具有更广泛的适用性(超出光谱法),在不同的模型参数会影响较大数据集中分离的小范围和/或具有较大敏感性的分离范围。
Robust model-fitting to spectroscopic transitions is a requirement across many fields of science. The corrected Akaike and Bayesian information criteria (AICc and BIC) are most frequently used to select the optimal number of fitting parameters. In general, AICc modelling is thought to overfit (too many model parameters) and BIC underfits. For spectroscopic modelling, both AICc and BIC lack in two important respects: (a) no penalty distinction is made according to line strength such that parameters of weak lines close to the detection threshold are treated with equal importance as strong lines and (b) no account is taken of the way in which spectral lines impact on narrow data regions. In this paper we introduce a new information criterion that addresses these shortcomings, the "Spectral Information Criterion" (SpIC). Spectral simulations are used to compare performances. The main findings are (i) SpIC clearly outperforms AICc for high signal to noise data, (ii) SpIC and AICc work equally well for lower signal to noise data, although SpIC achieves this with fewer parameters, and (iii) BIC does not perform well (for this application) and should be avoided. The new method should be of broader applicability (beyond spectroscopy), wherever different model parameters influence separated small ranges within a larger dataset and/or have widely varying sensitivities.