论文标题
资源蒸馏中的凸高斯资源理论中
Resource distillation in convex Gaussian resource theories
论文作者
论文摘要
众所周知,当仅限于高斯州和操作时,连续变量资源理论中的蒸馏是不可能的。为了克服这一限制,我们扩大了理论,以包括高斯州和操作的凸混合物。由于经典的随机性很容易访问,因此该扩展功能在操作上有充分的动力。我们发现,凸高斯资源理论的资源蒸馏可能以有限的方式。我们通过研究高斯资源度量的凸屋顶扩展来得出这一限制,然后继续证明我们的界限是通过示例协议进行蒸馏而紧密的。
It is known that distillation in continuous variable resource theories is impossible when restricted to Gaussian states and operations. To overcome this limitation, we enlarge the theories to include convex mixtures of Gaussian states and operations. This extension is operationally well-motivated since classical randomness is easily accessible. We find that resource distillation becomes possible for convex Gaussian resource theories-albeit in a limited fashion. We derive this limitation by studying the convex roof extension of a Gaussian resource measure and then go on to show that our bound is tight by means of example protocols for the distillation of squeezing and entanglement.