论文标题

设计知识平面以优化叶子和脊柱数据中心

Designing knowledge plane to optimize leaf and spine data center

论文作者

Sultan, Mujahid, Imbuido, Dodi, Patel, Kam, MacDonald, James, Ratnam, Kumar

论文摘要

在过去的几十年中,数据中心体系结构从传统的客户端服务器演变为访问 - 聚集核心架构。最近,由于对服务器到服务器之间的通信,负载平衡和无环境环境之间对低延迟和高吞吐量的需求越来越高,数据中心体系结构发生了新的变化。这种称为叶子和脊柱体系结构的新架构通过启用网络节点的添加和删除,从而提供低潜伏期和最小数据包丢失。网络节点可以根据网络统计信息从网络中添加或删除,例如链接速度,数据包丢失,延迟和吞吐量。 随着开放虚拟开关(OVS)和基于OpenFlow的软件定义网络(SDN)控制器的成熟度,根据网络统计信息,通过程序化扩展的网络自动化已成为可能。控制平面和数据平面的分离已启用了网络和机器学习(ML)的自动化管理(ML),以学习和优化网络。 在本出版物中,我们建议设计基于ML的方法来收集网络统计并建立知识平面。我们证明,该知识平面可以使用SouthBound API和SDN控制器实现数据中心优化。我们描述了这种方法的设计组件 - 使用网络模拟器,并表明它可以维持网络统计的历史模式,以预测未来的增长或下降。我们还提供了一个开源软件,该软件可以在叶子和脊柱数据中心中使用,以基于负载预测提供弹性容量。

In the last few decades, data center architecture evolved from the traditional client-server to access-aggregation-core architectures. Recently there is a new shift in the data center architecture due to the increasing need for low latency and high throughput between server-to-server communications, load balancing and, loop-free environment. This new architecture, known as leaf and spine architecture, provides low latency and minimum packet loss by enabling the addition and deletion of network nodes on demand. Network nodes can be added or deleted from the network based on network statistics like link speed, packet loss, latency, and throughput. With the maturity of Open Virtual Switch (OvS) and OpenFlow based Software Defined Network (SDN) controllers, network automation through programmatic extensions has become possible based on network statistics. The separation of the control plane and data plane has enabled automated management of network and Machine Learning (ML) can be applied to learn and optimize the network. In this publication, we propose the design of an ML-based approach to gather network statistics and build a knowledge plane. We demonstrate that this knowledge plane enables data center optimization using southbound APIs and SDN controllers. We describe the design components of this approach - using a network simulator and show that it can maintain the historical patterns of network statistics to predict future growth or decline. We also provide an open-source software that can be utilized in a leaf and spine data center to provide elastic capacity based on load forecasts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源