论文标题

软组织建模的强大各向异性高弹性配方

A robust anisotropic hyperelastic formulation for the modelling of soft tissue

论文作者

Nolan, David R., Gower, Artur L., Destrade, Michel, Ogden, Ray W., McGarry, Pat

论文摘要

最初开发了用于描述动脉组织的弹性特性的胶原纤维增强材料各向异性高弹性行为的Holzapfel-Gasser-Ogden(HGO)模型,但现在广泛用于建模各种软生物学组织。这样的材料可以被认为是不可压缩的,当采用不可压缩的条件时,应变能ψ的应变能ψ是一个各向同性和两个各向异性变形不变的函数。可压缩形式(HGO-C模型)被广泛用于有限元模拟中,从而将ψ的各向同性部分分解为体积和等距部分,并且以等速不恒星表示ψis的各向异性部分。在这里,通过使用三个简单的变形(纯扩张,纯剪切和单轴拉伸),我们证明了可压缩的HGO-C配方不能正确模拟可压缩的各向异性材料行为,因为该模型的各向异性成分对高压质量不敏感,因为它对同秒性异位呈偏线性偏振而成。为了正确模拟可压缩的各向异性行为,我们提出了修改的各向异性(MA)模型,其中使用了完整的各向异性不变性,因此代表了体积各向异性贡献。 MA模型正确地预测了对静液压拉伸负荷的各向异性反应,从而使球体变形为椭圆形。它还为纯剪切和单轴变形的正确各向异性应力状态计算正确的各向异性应力状态。为了查看更实际的应用程序,我们开发了一个有限的元素用户定义的材料子例程,用于模拟稍微可压缩的动脉中的支架部署。当使用全各向异性不变性(MA模型)而不是等速形式(HGO-C模型)时,计算出明显更高的应力三轴性和动脉依从性。

The Holzapfel-Gasser-Ogden (HGO) model for anisotropic hyperelastic behaviour of collagen fibre reinforced materials was initially developed to describe the elastic properties of arterial tissue, but is now used extensively for modelling a variety of soft biological tissues. Such materials can be regarded as incompressible, and when the incompressibility condition is adopted the strain energy Ψof the HGO model is a function of one isotropic and two anisotropic deformation invariants. A compressible form (HGO-C model) is widely used in finite element simulations whereby the isotropic part of Ψis decoupled into volumetric and isochoric parts and the anisotropic part of Ψis expressed in terms of isochoric invariants. Here, by using three simple deformations (pure dilatation, pure shear and uniaxial stretch), we demonstrate that the compressible HGO-C formulation does not correctly model compressible anisotropic material behaviour, because the anisotropic component of the model is insensitive to volumetric deformation due to the use of isochoric anisotropic invariants. In order to correctly model compressible anisotropic behaviour we present a modified anisotropic (MA) model, whereby the full anisotropic invariants are used, so that a volumetric anisotropic contribution is represented. The MA model correctly predicts an anisotropic response to hydrostatic tensile loading, whereby a sphere deforms into an ellipsoid. It also computes the correct anisotropic stress state for pure shear and uniaxial deformation. To look at more practical applications, we developed a finite element user-defined material subroutine for the simulation of stent deployment in a slightly compressible artery. Significantly higher stress triaxiality and arterial compliance are computed when the full anisotropic invariants are used (MA model) instead of the isochoric form (HGO-C model).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源