论文标题

非二元各向异性量子厅陈述

Non-diagonal anisotropic quantum Hall states

论文作者

Tam, Pok Man, Kane, Charles L.

论文摘要

我们提出了一个被称为非对角线状态的阿贝利安量子厅国家的家族,该州以填充因子$ν= p/2q $的bosonic Systems出现,费米尼克系统的$ν= p/(p+2q)$,$ p $,$ p $,$ q $ $ q $是两个coprime Integers。非对基的量子霍尔状态是在耦合的线模型中构建的,该模型显示了与非对基的共形场理论的亲密关系,并且具有块状准粒子的运动模式,具有块状准粒子的限制模式,其特征是电荷对称性和翻译对称性之间的非平凡相互作用。非对角性状态被确定为具有独特的对称性拓扑顺序。除了通常的$ u(1)$电荷领域外,还有一个由量子双模型$ \ MATHCAL {d}(\ Mathbb {Z} _P)$描述的其他对称性中性扇区,依赖于$ U(1)$ caruep symmetry和$ \ mathbbbb {z} $ cransion的$ u(1)$ cairsmetry transimed trans transimed trans transimed a $ u(1)$ u(1)翻译对称性将非对角性状态与Laughlin国家区分开来,类似于它如何区分弱拓扑绝缘子和琐碎带绝缘子。此外,非二元状态的翻译对称性可以与$ \ mathbf {e} \ leftrightArrow \ Mathbf {M} $ $ \ Mathcal {d}(\ Mathbb {z} _p)$中的$ \ Mathcal {d}中的任何对称性相关联。非对抗状态的边界理论是通过显微镜得出的。对于垂直于电线方向的边缘,有效的汉密尔顿有两个组成部分:手性Luttinger液体和广义的$ P $ - 州时钟模型。重要的是,散装中的翻译对称性被认为是边缘上的自以为是的。因此,对称边缘是无间隙或自发折断的对称性的凹陷。对于$ p = 2,3 $,预测相应的电子隧道指数用于实验探针。

We propose a family of Abelian quantum Hall states termed the non-diagonal states, which arise at filling factors $ν=p/2q$ for bosonic systems and $ν=p/(p+2q)$ for fermionic systems, with $p$ and $q$ being two coprime integers. Non-diagonal quantum Hall states are constructed in a coupled wire model, which shows an intimate relation to the non-diagonal conformal field theory and has a constrained pattern of motion for bulk quasiparticles, featuring a non-trivial interplay between charge symmetry and translation symmetry. The non-diagonal state is established as a distinctive symmetry-enriched topological order. Aside from the usual $U(1)$ charge sector, there is an additional symmetry-enriched neutral sector described by the quantum double model $\mathcal{D}(\mathbb{Z}_p)$, which relies on the presence of both the $U(1)$ charge symmetry and the $\mathbb{Z}$ translation symmetry of the wire model. Translation symmetry distinguishes non-diagonal states from Laughlin states, in a way similar to how it distinguishes weak topological insulators from trivial band insulators. Moreover, the translation symmetry in non-diagonal states can be associated to the $\mathbf{e}\leftrightarrow\mathbf{m}$ anyonic symmetry in $\mathcal{D}(\mathbb{Z}_p)$, implying the role of dislocations as two-fold twist-defects. The boundary theory of non-diagonal states is derived microscopically. For the edge perpendicular to the direction of wires, the effective Hamiltonian has two components: a chiral Luttinger liquid and a generalized $p$-state clock model. Importantly, translation symmetry in the bulk is realized as self-duality on the edge. The symmetric edge is thus either gapless or gapped with spontaneously broken symmetry. For $p=2,3$, the respective electron tunneling exponents are predicted for experimental probes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源