论文标题
在不可渗透通道中的随机对流扩散方程的概率分布函数中持续不对称性
Persisting asymmetry in the probability distribution function for a random advection-diffusion equation in impermeable channels
论文作者
论文摘要
我们研究了不可渗透边界对随机流动前进的随机被动标量场的对称特性的影响。我们专注于一类广泛的非线性剪切流,乘以固定的Ornstein-uhlenbeck(OU)时间变化的过程,包括其某些极限情况,例如高斯白噪声或插头流。对于前者带有线性剪切的情况,最近的研究\ cite {camassa2019symmetry}在数值上表明,腐烂的被动标量长时间的限制概率分布函数(PDF)可以在可构成的空间中进行严格的渠道界限,而在建立的限制性的情况下,可能会在限制的情况下进行严格的界限,从而负有负面影响。 \ cite {mclaughlin1996 explitic}。在这里,使用从基态特征eigenvalue扰动方法获得的$ n $ n $ point相关器的长期渐近扩展来确定上述界限的长时间限制偏度的作用在上述课程中建立。我们的分析结果验证了从\ cite {Camassa2019smmemetry}中的数值模拟获得的线性剪切流的结论。此外,我们证明,对于足够低的péclet数字,限制分布对任何剪切流量都是负偏斜的。我们表明,前三个矩的长时间限制明确取决于$γ$的值,这与\ cite {vanden2001non}中的结论相反,在自由空间中限制了PDF。我们得出了没有空间依赖性和高斯时间波动的流量的$ n $ - 点相关器的确切公式,从而推广\ cite {bronski200777 explitic}的结果。对该公式的长期分析与我们的一般剪切流的理论一致。所有结果均通过蒙特卡洛模拟验证。
We study the effect of impermeable boundaries on the symmetry properties of a random passive scalar field advected by random flows. We focus on a broad class of nonlinear shear flows multiplied by a stationary, Ornstein-Uhlenbeck (OU) time varying process, including some of their limiting cases, such as Gaussian white noise or plug flows. For the former case with linear shear, recent studies \cite{camassa2019symmetry} numerically demonstrated that the decaying passive scalar's long time limiting probability distribution function (PDF) could be negatively skewed in the presence of impermeable channel boundaries, in contrast to rigorous results in free space which established the limiting PDF is positively skewed \cite{mclaughlin1996explicit}. Here, the role of boundaries in setting the long time limiting skewness of the PDF is established rigorously for the above class using the long time asymptotic expansion of the $N$-point correlator of the random field obtained from the ground state eigenvalue perturbation approach proposed in \cite{bronski1997scalar}. Our analytical result verifies the conclusion for the linear shear flow obtained from numerical simulations in \cite{camassa2019symmetry}. Moreover, we demonstrate that the limiting distribution is negatively skewed for any shear flow at sufficiently low Péclet number. We show that the long time limit of the first three moments depends explicitly on the value of $γ$, which is in contrast to the conclusion in \cite{vanden2001non} for the limiting PDF in free space. We derive the exact formula of the $N$-point correlator for a flow with no spatial dependence and Gaussian temporal fluctuation, generalizing the results of \cite{bronski2007explicit}. The long time analysis of this formula is consistent with our theory for a general shear flow. All results are verified by Monte-Carlo simulations.