论文标题

在第二个同置通勤元素的均匀空间组中

On the second homotopy group of spaces of commuting elements in Lie groups

论文作者

Adem, Alejandro, Gómez, José Manuel, Gritschacher, Simon

论文摘要

让$ g $为紧凑的连接谎言组,$ n \ geqslant 1 $整数。考虑在$ g $,$ hom(\ mathbb {z}^n,g)$中以$ n $ tumples的订购空间,并在伴随动作下的商,$ rep(\ mathbb {z}^n,g):= home(\ hom(\ mathbb {z}^n,g)/g $。在本文中,我们研究并在许多情况下计算同型组$π_2(hOM(\ Mathbb {z}^n,g))$。对于$ g $简单 - 连接而简单,我们证明$π_2(\ hom(\ mathbb {z}^2,g))\ cong \ mathbb {z} $ and $π_2(pop(\ mathbb {z}^2,g)) $ hom(\ mathbb {z}^2,g)\ to rep(\ mathbb {z}^2,g)$诱导$ g $的dynkin索引乘以乘法。更普遍地表明,如果$ g $很简单,而$ hom(\ mathbb {z}^2,g)_ {1} \ subseteq hom(\ mathbb {z}^2,g)$是琐碎的同源物的路径,那么$ h_2(hOM(\ MATHBB {Z}^2,G)_ {1}; \ MATHBB {Z})$是$π_1(g)^2 $ by $ \ MATHBB {Z} $的Schur乘数的扩展。 We apply our computations to prove that if $B_{com}G_{1}$ is the classifying space for commutativity at the identity component, then $π_4(B_{com}G_{1})\cong \mathbb{Z}\oplus \mathbb{Z}$, and we construct examples of non-trivial transitionally commutative structures on the琐事principal $ g $ -Bundle覆盖了球体$ \ Mathbb {s}^{4} $。

Let $G$ be a compact connected Lie group and $n\geqslant 1$ an integer. Consider the space of ordered commuting $n$-tuples in $G$, $Hom(\mathbb{Z}^n,G)$, and its quotient under the adjoint action, $Rep(\mathbb{Z}^n,G):=Hom(\mathbb{Z}^n,G)/G$. In this article we study and in many cases compute the homotopy groups $π_2(Hom(\mathbb{Z}^n,G))$. For $G$ simply--connected and simple we show that $π_2(Hom(\mathbb{Z}^2,G))\cong \mathbb{Z}$ and $π_2(Rep(\mathbb{Z}^2,G))\cong \mathbb{Z}$, and that on these groups the quotient map $Hom(\mathbb{Z}^2,G)\to Rep(\mathbb{Z}^2,G)$ induces multiplication by the Dynkin index of $G$. More generally we show that if $G$ is simple and $Hom(\mathbb{Z}^2,G)_{1}\subseteq Hom(\mathbb{Z}^2,G)$ is the path--component of the trivial homomorphism, then $H_2(Hom(\mathbb{Z}^2,G)_{1};\mathbb{Z})$ is an extension of the Schur multiplier of $π_1(G)^2$ by $\mathbb{Z}$. We apply our computations to prove that if $B_{com}G_{1}$ is the classifying space for commutativity at the identity component, then $π_4(B_{com}G_{1})\cong \mathbb{Z}\oplus \mathbb{Z}$, and we construct examples of non-trivial transitionally commutative structures on the trivial principal $G$-bundle over the sphere $\mathbb{S}^{4}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源