论文标题
在BCIS建筑物的EEG信号中分析工件
Analysis of artifacts in EEG signals for building BCIs
论文作者
论文摘要
脑部计算机界面(BCI)是解释人脑信号的基本机制。它提供了一种辅助技术,使运动障碍者能够与世界交流,并使他们过上独立的生活。常见的BCI设备使用从头皮记录的脑电图(EEG)电活动。由于存在许多文物,即眼眨眼,头部运动和下巴运动,EEG信号很嘈杂。这样的工件破坏了脑电图的信号,并使脑电图分析具有挑战性。通过在分析中找到工件并将脑电图排除在分析中,从而解决了这个问题,这可能导致有用的信息丢失。但是,我们提出了使用具有较低信号噪声比的伪影的实用BCI。 我们工作的目的是对脑电图信号中的不同类型的人工制品进行分类,即眼睛眨眼,点头,头转弯和下颌运动。伪影的发生首先位于脑电图中。然后,使用线性时间和动态时间翘曲技术对所定的伪影进行分类。有运动障碍的人可以使用定位的工件来控制智能手机。在单个通道脑电图系统中使用震呼的语音合成应用,并在四个通道内脑力系统中的下颌clim缩。单词预测模型用于单词完成,从而减少了所需的工件数量。
Brain-Computer Interface (BCI) is an essential mechanism that interprets the human brain signal. It provides an assistive technology that enables persons with motor disabilities to communicate with the world and also empowers them to lead independent lives. The common BCI devices use Electroencephalography (EEG) electrical activity recorded from the scalp. EEG signals are noisy owing to the presence of many artifacts, namely, eye blink, head movement, and jaw movement. Such artifacts corrupt the EEG signal and make EEG analysis challenging. This issue is addressed by locating the artifacts and excluding the EEG segment from the analysis, which could lead to a loss of useful information. However, we propose a practical BCI that uses the artifacts which has a low signal to noise ratio. The objective of our work is to classify different types of artifacts, namely eye blink, head nod, head turn, and jaw movements in the EEG signal. The occurrence of the artifacts is first located in the EEG signal. The located artifacts are then classified using linear time and dynamic time warping techniques. The located artifacts can be used by a person with a motor disability to control a smartphone. A speech synthesis application that uses eyeblinks in a single channel EEG system and jaw clinches in four channels EEG system are developed. Word prediction models are used for word completion, thus reducing the number of artifacts required.