论文标题

通过凸价来抵消市场不平等

Counteracting Inequality in Markets via Convex Pricing

论文作者

Goel, Ashish, Plaut, Benjamin

论文摘要

我们研究将可分割商品分配给具有准公用事业的竞争代理商的市场机制。对于\ emph {linear}定价(即,商品的成本与购买的数量成正比),第一个福利定理指出,沃尔拉斯·耶鲁(Walrasian equilibria)最大化了代理估值的总和。这确保了效率,但可能导致个人的极端不平等。许多现实世界中的市场(尤其是水)使用\ emph {convex}定价,通常被称为增加块关税(IBTS)。 IBT被认为可以促进平等,但是对这一主张的理论支持不足。 在本文中,我们研究了一个简单的凸定价规则,并表明所产生的平衡可以最大化CES福利函数。此外,定价规则的参数直接确定实现了哪些CES福利函数;通过调整此参数,社会计划者可以精确控制平等与效率之间的权衡。我们的结果符合任何均质,可区分和凹入的估值。我们还提供了一种用于计算这些定价规则的迭代算法,为单一商品的情况得出了真实的机制,并讨论了Sybil攻击。

We study market mechanisms for allocating divisible goods to competing agents with quasilinear utilities. For \emph{linear} pricing (i.e., the cost of a good is proportional to the quantity purchased), the First Welfare Theorem states that Walrasian equilibria maximize the sum of agent valuations. This ensures efficiency, but can lead to extreme inequality across individuals. Many real-world markets -- especially for water -- use \emph{convex} pricing instead, often known as increasing block tariffs (IBTs). IBTs are thought to promote equality, but there is a dearth of theoretical support for this claim. In this paper, we study a simple convex pricing rule and show that the resulting equilibria are guaranteed to maximize a CES welfare function. Furthermore, a parameter of the pricing rule directly determines which CES welfare function is implemented; by tweaking this parameter, the social planner can precisely control the tradeoff between equality and efficiency. Our result holds for any valuations that are homogeneous, differentiable, and concave. We also give an iterative algorithm for computing these pricing rules, derive a truthful mechanism for the case of a single good, and discuss Sybil attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源