论文标题
无菌昆虫控制策略的随机空间模型
A stochastic spatial model for the sterile insect control strategy
论文作者
论文摘要
在我们研究的系统中,1和0代表以$λ$的出生为单位的接触过程中的占领和空置地点,而死亡率为1。$ -1 $的$ -1 $是不繁殖但以$α$的空置现场出现在空置站点上,以$α$ $θα$自发出现。我们表明,该系统(很有吸引力,但没有双重)以临界价值为止,并且在超临界时具有非平凡的固定分布。我们最有趣的结果涉及$α\至0 $时的渐近学。在此制度中,该过程类似于随机环境中的联系过程。
In the system we study, 1's and 0's represent occupied and vacant sites in the contact process with births at rate $λ$ and deaths at rate 1. $-1$'s are sterile individuals that do not reproduce but appear spontaneously on vacant sites at rate $α$ and die at rate $θα$. We show that the system (which is attractive but has no dual) dies out at the critical value and has a nontrivial stationary distribution when it is supercritical. Our most interesting results concern the asymptotics when $α\to 0$. In this regime the process resembles the contact process in a random environment.