论文标题
带有激光工程光学陷阱的腔光力学
Cavity Optomechanics with a Laser Engineered Optical Trap
论文作者
论文摘要
激光工程的激光激子 - 波利顿网络可能会导致动态配置的集成光电路和量子设备。在激光构型混合设计中,腔体光学机械与电动力学相结合构成了信号的振动控制,转换和传输的平台。以此目的,我们研究了量子孔嵌入式半导体平面微腔中的3D光学陷阱激光诱导的。我们表明,激光生成和控制的陷阱的离散状态急剧修改了谐振器中限制的光子和声子之间的相互作用,并通过光弹性起源$ g_ \ mathrm {0}/2π\ sim 1.7 $ mhz optomechical opanical opanical coolativity $ c> 1 $ 1 $ 1 $ 1 $ $ c for mw for mw for mw for mw for mw for mw for mw for Mhz。在侧带解决方案中涉及涉及成对离散光学状态的反stokes过程的Stokes过程的淬灭和双重共振的增强,允许从室温下降到$ \ sim120 $ k的光学机械冷却,从室温下降到$ \ sim120 $ k。 GHz)用于未来的网络和量子技术。
Laser engineered exciton-polariton networks could lead to dynamically configurable integrated optical circuitry and quantum devices. Combining cavity optomechanics with electrodynamics in laser configurable hybrid designs constitutes a platform for the vibrational control, conversion, and transport of signals. With this aim we investigate 3D optical traps laser-induced in quantum-well embedded semiconductor planar microcavities. We show that the laser generated and controlled discrete states of the traps dramatically modify the interaction between photons and phonons confined in the resonators, accessing through coupling of photoelastic origin $g_\mathrm{0}/2π\sim 1.7$ MHz an optomechanical cooperativity $C>1$ for mW excitation. The quenching of Stokes processes and double-resonant enhancement of anti-Stokes ones involving pairs of discrete optical states in the side-band resolved regime, allows the optomechanical cooling of 180 GHz bulk acoustic waves, starting from room temperature down to $\sim120$ K. These results pave the way for dynamical tailoring of optomechanical actuation in the extremely-high-frequency range (30-300 GHz) for future network and quantum technologies.