论文标题
听众建模和上下文感知音乐推荐基于国家原型
Listener Modeling and Context-aware Music Recommendation Based on Country Archetypes
论文作者
论文摘要
音乐偏好是由听众的文化和社会经济背景强烈塑造的,这在很大程度上反映在特定于国家 /地区的音乐聆听概况中。先前的工作已经确定了在听音乐艺术家的流行分布上的几种特定国家 /地区的差异。尤其是,构成“音乐主流”的东西在国家之间有着强烈的变化。为了补充和扩展这些结果,手头的文章提供了以下主要贡献:首先,使用无监督的学习技巧,我们确定并彻底调查(1)音乐偏好的国家偏好国家概况(相比之下,与早期的工作相反,与早期的作品相比,依靠艺术家级别的音乐级别)和(2)country Archetypes and(2)与该模式相似的国家 /地区的型号。其次,我们制定了四个用户模型,以利用用户的国家 /地区信息信息。除其他外,我们提出了一种用户建模方法,将音乐听众描述为与已确定的国家群体或原型相似的向量。第三,我们提出了一个上下文感知的音乐推荐系统,该系统利用隐式用户反馈,其中通过四个用户模型定义上下文。更确切地说,它是基于变异自动编码器的多层生成模型,在该模型中,上下文特征可以通过门控机制影响建议。第四,我们在世界各地用户(我们在实验中使用3.69亿使用)的现实世界语料库中彻底评估了提出的推荐系统和用户模型,并显示了其优点有关最先进的算法,这些算法不会利用这种类型的上下文信息。
Music preferences are strongly shaped by the cultural and socio-economic background of the listener, which is reflected, to a considerable extent, in country-specific music listening profiles. Previous work has already identified several country-specific differences in the popularity distribution of music artists listened to. In particular, what constitutes the "music mainstream" strongly varies between countries. To complement and extend these results, the article at hand delivers the following major contributions: First, using state-of-the-art unsupervised learning techniques, we identify and thoroughly investigate (1) country profiles of music preferences on the fine-grained level of music tracks (in contrast to earlier work that relied on music preferences on the artist level) and (2) country archetypes that subsume countries sharing similar patterns of listening preferences. Second, we formulate four user models that leverage the user's country information on music preferences. Among others, we propose a user modeling approach to describe a music listener as a vector of similarities over the identified country clusters or archetypes. Third, we propose a context-aware music recommendation system that leverages implicit user feedback, where context is defined via the four user models. More precisely, it is a multi-layer generative model based on a variational autoencoder, in which contextual features can influence recommendations through a gating mechanism. Fourth, we thoroughly evaluate the proposed recommendation system and user models on a real-world corpus of more than one billion listening records of users around the world (out of which we use 369 million in our experiments) and show its merits vis-a-vis state-of-the-art algorithms that do not exploit this type of context information.