论文标题

光学几何形状

Optical geometries

论文作者

Fino, Anna, Leistner, Thomas, Taghavi-Chabert, Arman

论文摘要

我们从内在扭转的角度研究了光学几何形状的概念,该概念定义为具有无效线分布的Lorentzian歧管。这是Lorentzian几何形状中的自动降低的不可汇总版本的实例。这些产生了无效曲线的一致性,这在一般相对论中起着重要的作用。研究了这些共形性能。我们还将这个概念扩展到了Robinson和Trautman引入的广义光学几何形状。

We study the notion of optical geometry, defined to be a Lorentzian manifold equipped with a null line distribution, from the perspective of intrinsic torsion. This is an instance of a non-integrable version of holonomy reduction in Lorentzian geometry. These generate congruences of null curves, which play an important rôle in general relativity. Conformal properties of these are investigated. We also extend this concept to generalised optical geometries as introduced by Robinson and Trautman.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源