论文标题

整体klein瓶手术和Heegaard浮子同源

Integral Klein bottle surgeries and Heegaard Floer homology

论文作者

DeYeso III, Robert

论文摘要

我们研究的是,其中包含一个klein瓶的$ x $封闭,连接,定向的三个manifolds $ x $,作为$ s^3 $的结的整体手术。这样的$ x $可以作为扭曲的$ i $块粘合在klein瓶上的粘合,并使用各种Heegaard Floer型不变性来产生手术障碍物。假设$ x $是沿两个结属的$ 8 $ surgery,并且是通过将扭曲的$ i $ undle粘在克莱因瓶上的$ s^3 $结的补充而产生的。我们表明$ x $是L型,它一定是二歧管$ \ left(-1; \ tfrac {1} {2} {2},\ tfrac {1} {2} {2},\ tfrac {2} {2} {5} {5} {5} {5} \ right)$,并且必须为$ k = t(2,5)。

We study which closed, connected, orientable three-manifolds $X$ containing a Klein bottle arise as integral Dehn surgery along a knot in $S^3$. Such $X$ are presentable as a gluing of the twisted $I$-bundle over the Klein bottle to a knot manifold, and we use a variety of Heegaard Floer type invariants to generate surgery obstructions. Suppose that $X$ is $8$-surgery along a genus two knot, and arises by gluing the twisted $I$-bundle over the Klein bottle to an $S^3$ knot complement. We show that $X$ is an L-space, it must be the dihedral manifold $\left(-1; \tfrac{1}{2}, \tfrac{1}{2}, \tfrac{2}{5}\right)$, and the surgery knot must be $K=T(2,5)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源