论文标题

广场:基于语义的问题回答和推理引擎

SQuARE: Semantics-based Question Answering and Reasoning Engine

论文作者

Basu, Kinjal, Varanasi, Sarat Chandra, Shakerin, Farhad, Gupta, Gopal

论文摘要

理解文本的含义是自然语言理解(NLU)的基本挑战,从早期开始,它通过问答(QA)任务受到了重大关注。我们介绍了一个基于自然语言QA的一般语义的框架,并描述了Square System,这是该框架的应用。该框架是基于在编程语言研究中广泛使用的典型语义方法。在我们的框架中,估值函数映射文本的语法为其常识性含义,该含义使用基本知识基础(语义代数)使用答案集编程(ASP)代表。我们通过使用动词原语作为我们的语义代数和基于部分树匹配的新颖算法来说明此框架的应用,该算法生成了一个代表文本中知识的答案集程序。 针对该文本提出的问题使用相同的框架将其转换为ASP查询,并使用S(CASP)指导的ASP系统执行。我们的方法纯粹基于(常识性)推理。 Square在我们测试过的所有五个BABI QA任务的所有五个数据集上都可以达到100%的精度。我们工作的重要性是,与其他基于机器学习的方法不同,我们的方法基于“理解”文本,并且不需要任何培训。正方形还可以在保持高精度的同时为答案产生解释。

Understanding the meaning of a text is a fundamental challenge of natural language understanding (NLU) and from its early days, it has received significant attention through question answering (QA) tasks. We introduce a general semantics-based framework for natural language QA and also describe the SQuARE system, an application of this framework. The framework is based on the denotational semantics approach widely used in programming language research. In our framework, valuation function maps syntax tree of the text to its commonsense meaning represented using basic knowledge primitives (the semantic algebra) coded using answer set programming (ASP). We illustrate an application of this framework by using VerbNet primitives as our semantic algebra and a novel algorithm based on partial tree matching that generates an answer set program that represents the knowledge in the text. A question posed against that text is converted into an ASP query using the same framework and executed using the s(CASP) goal-directed ASP system. Our approach is based purely on (commonsense) reasoning. SQuARE achieves 100% accuracy on all the five datasets of bAbI QA tasks that we have tested. The significance of our work is that, unlike other machine learning based approaches, ours is based on "understanding" the text and does not require any training. SQuARE can also generate an explanation for an answer while maintaining high accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源