论文标题
使用相位调制的驾驶场的量子最佳控制
Quantum optimal control using phase-modulated driving fields
论文作者
论文摘要
量子最佳控制代表了一种强大的技术,可以通过工程化汉密尔顿的可控参数来增强量子实验的性能。但是,随着数量的增长,对这些控制参数进行必要优化的计算开销会大大增加。我们通过引入相位调节驱动场的概念来设计一种无梯度最佳控制方法的新型变体,这使我们能够有效地找到最佳的控制场。我们通过数值评估其性能,并证明了与标准傅立叶基础方法的优势在控制两级系统的集合中,显示出不均匀的扩展。使用相位调制方法优化的控制场为这种集合不均匀性以及控制场波动和环境噪声提供了提高的鲁棒性,而平均搜索时间的数量级较小。通过相调的方法,也可以实现单个量子门的鲁棒性增强。在环境噪声下,与我们的数值模拟中的标准矩形脉冲相比,优化门由优化门构成的XY-8序列延长了连贯性时间$ 50 \%$,显示了我们相位调制方法在提高量子传感现场信号检测精度方面的应用潜力。
Quantum optimal control represents a powerful technique to enhance the performance of quantum experiments by engineering the controllable parameters of the Hamiltonian. However, the computational overhead for the necessary optimization of these control parameters drastically increases as their number grows. We devise a novel variant of a gradient-free optimal-control method by introducing the idea of phase-modulated driving fields, which allows us to find optimal control fields efficiently. We numerically evaluate its performance and demonstrate the advantages over standard Fourier-basis methods in controlling an ensemble of two-level systems showing an inhomogeneous broadening. The control fields optimized with the phase-modulated method provide an increased robustness against such ensemble inhomogeneities as well as control-field fluctuations and environmental noise, with one order of magnitude less of average search time. Robustness enhancement of single quantum gates is also achieved by the phase-modulated method. Under environmental noise, an XY-8 sequence constituted by optimized gates prolongs the coherence time by $50\%$ compared with standard rectangular pulses in our numerical simulations, showing the application potential of our phase-modulated method in improving the precision of signal detection in the field of quantum sensing.