论文标题

kähler-icci在fano歧管上流动的均匀强烈融合

Uniformly strong convergence of Kähler-Ricci flows on a Fano manifold

论文作者

Wang, Feng, Zhu, Xiaohua

论文摘要

在本文中,我们研究了Kähler-Ricci流在Fano歧管上的均匀强大收敛性,其初始指标和光滑的变形复合结构。作为一种应用,我们证明了Kähler-Icci solitons在差异轨道上的独特性。结果概括了天祖的定理,因为卡勒·诺氏菌在紧凑的复杂歧管上的独特性,这也是陈 - 苏恩(Chen-Sun)对Kähler-Einstein Metric轨道独特性的概括的概括。

In this paper, we study the uniformly strong convergence of Kähler-Ricci flow on a Fano manifold with varied initial metrics and smooth deformation complex structures. As an application, we prove the uniqueness of Kähler-Ricci solitons in sense of diffeomorphism orbits. The result generalizes Tian-Zhu's theorem for the uniqueness of of Kähler-Ricci solitons on a compact complex manifold, and it is also a generalization of Chen-Sun's result of for the uniqueness of of Kähler-Einstein metric orbits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源