论文标题

FPGA上的个性化Pagerank的缩短的精确流式SPMV体系结构

A reduced-precision streaming SpMV architecture for Personalized PageRank on FPGA

论文作者

Parravicini, Alberto, Sgherzi, Francesco, Santambrogio, Marco D.

论文摘要

稀疏的矩阵矢量乘法通常在许多数据分析工作负载中使用,其中低延迟和高吞吐量比精确的数值收敛更有价值。 FPGA提供快速执行时间,同时,由于降低了精确的固定点算术,可以精确控制结果的准确性。在这项工作中,我们提出了一种新型的坐标格式的流式传输实现(COO)稀疏矩阵 - 矢量乘法,并研究其在电子商务网站和社交网络中推荐系统的常见构件时,将其应用于个性化的Pagerank算法。我们的实施实现了高达6倍的速度浮点FPGA体系结构,以及与CPU实施相比,在8种不同的数据集上进行了8种不同的数据集的最先进的多线程CPU实现,同时保留了结果的数值忠诚度并提高了42倍的能源效率。

Sparse matrix-vector multiplication is often employed in many data-analytic workloads in which low latency and high throughput are more valuable than exact numerical convergence. FPGAs provide quick execution times while offering precise control over the accuracy of the results thanks to reduced-precision fixed-point arithmetic. In this work, we propose a novel streaming implementation of Coordinate Format (COO) sparse matrix-vector multiplication, and study its effectiveness when applied to the Personalized PageRank algorithm, a common building block of recommender systems in e-commerce websites and social networks. Our implementation achieves speedups up to 6x over a reference floating-point FPGA architecture and a state-of-the-art multi-threaded CPU implementation on 8 different data-sets, while preserving the numerical fidelity of the results and reaching up to 42x higher energy efficiency compared to the CPU implementation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源