论文标题

使用降低性降低和聚类技术来对空间等离子体进行分类

Using dimensionality reduction and clustering techniques to classify space plasma regimes

论文作者

Bakrania, Mayur R., Rae, I. Jonathan, Walsh, Andrew P., Verscharen, Daniel, Smith, Andy W.

论文摘要

无碰撞空间等离子体环境通常以不同的粒子种群为特征。尽管其速度分布功能的矩有助于区分不同的等离子体状态,但分布函数本身提供了有关等离子体状态的更全面的信息,尤其是在分布功能包括非热效应的时候。但是,与时刻不同,分布功能不容易以少量参数为特征,从而使它们的分类更加难以实现。为了执行此分类,我们建议通过在俯仰角度和能量空间中应用尺寸降低和聚类方法来区分不同的等离子体区域。我们利用四种独立的算法来实现我们的等离子分类:自动编码器,主成分分析,平均移位和聚集聚类。我们通过将我们的方案应用于地球磁尾仪中测得的集群和平仪器的数据来测试我们的分类算法。传统上,人们认为,地球的磁尾被分为三个不同的区域(等离子板,等离子片边界层和叶),这些区域主要由其血浆特征定义。从基于等离子参数的相关分类的ECLAT数据库开始,我们确定了8个不同的分布组,这些分布组取决于更复杂的等离子体和现场动力学。通过比较每个区域的平均分布以及等离子体和磁场参数,我们将几个组与不同的等离子板种群联系起来,其余的我们将其归因于等离子板边界层和裂片。我们发现每个分类区域与ECLAT结果之间存在明确的区别。

Collisionless space plasma environments are typically characterised by distinct particle populations. Although moments of their velocity distribution functions help in distinguishing different plasma regimes, the distribution functions themselves provide more comprehensive information about the plasma state, especially at times when the distribution function includes non-thermal effects. Unlike moments, however, distribution functions are not easily characterised by a small number of parameters, making their classification more difficult to achieve. In order to perform this classification, we propose to distinguish between the different plasma regions by applying dimensionality reduction and clustering methods to electron distributions in pitch angle and energy space. We utilise four separate algorithms to achieve our plasma classifications: autoencoders, principal component analysis, mean shift, and agglomerative clustering. We test our classification algorithms by applying our scheme to data from the Cluster-PEACE instrument measured in the Earth's magnetotail. Traditionally, it is thought that the Earth's magnetotail is split into three different regions (the plasma sheet, the plasma sheet boundary layer, and the lobes), that are primarily defined by their plasma characteristics. Starting with the ECLAT database with associated classifications based on the plasma parameters, we identify 8 distinct groups of distributions, that are dependent upon significantly more complex plasma and field dynamics. By comparing the average distributions as well as the plasma and magnetic field parameters for each region, we relate several of the groups to different plasma sheet populations, and the rest we attribute to the plasma sheet boundary layer and the lobes. We find clear distinctions between each of our classified regions and the ECLAT results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源