论文标题
将临床标准整合到深层模型的培训中:糖尿病患者葡萄糖预测的应用
Integration of Clinical Criteria into the Training of Deep Models: Application to Glucose Prediction for Diabetic People
论文作者
论文摘要
在基于神经网络的预测模型培训期间使用的标准目标功能不考虑临床标准,这导致不一定在临床上接受的模型。在这项研究中,我们从对糖尿病患者未来葡萄糖值的预测的角度来看这个问题。在这项研究中,我们提出了连贯的平方平方血糖误差(GCMSE)损耗函数。它不仅在训练期间对模型进行了惩罚,而且对预测变化误差也对葡萄糖预测很重要。此外,有可能调整误差空间中不同区域的加权,以更好地关注危险区域。为了在实践中使用损失功能,我们提出了一种算法,该算法逐渐改善了模型的临床可接受性,以便我们可以在准确性和给定临床标准之间实现最佳的权衡。我们使用两个糖尿病数据集评估了这些方法,一个数据集和另一个患者和另外2型患者。结果表明,使用GCMSE损耗函数,而不是标准的MSE损耗函数,可以提高模型的临床可接受性。特别是,在低血糖区域中的改善很大。我们还表明,这种提高的临床可接受性是以模型平均准确性降低的成本。最后,我们表明,可以通过拟议的算法成功解决准确性和临床可接受性之间的这种权衡。对于给定的临床标准,该算法可以找到最佳的解决方案,该解决方案在同一符合标准的同时最大化准确性。
Standard objective functions used during the training of neural-network-based predictive models do not consider clinical criteria, leading to models that are not necessarily clinically acceptable. In this study, we look at this problem from the perspective of the forecasting of future glucose values for diabetic people. In this study, we propose the coherent mean squared glycemic error (gcMSE) loss function. It penalizes the model during its training not only of the prediction errors, but also on the predicted variation errors which is important in glucose prediction. Moreover, it makes possible to adjust the weighting of the different areas in the error space to better focus on dangerous regions. In order to use the loss function in practice, we propose an algorithm that progressively improves the clinical acceptability of the model, so that we can achieve the best tradeoff possible between accuracy and given clinical criteria. We evaluate the approaches using two diabetes datasets, one having type-1 patients and the other type-2 patients. The results show that using the gcMSE loss function, instead of a standard MSE loss function, improves the clinical acceptability of the models. In particular, the improvements are significant in the hypoglycemia region. We also show that this increased clinical acceptability comes at the cost of a decrease in the average accuracy of the model. Finally, we show that this tradeoff between accuracy and clinical acceptability can be successfully addressed with the proposed algorithm. For given clinical criteria, the algorithm can find the optimal solution that maximizes the accuracy while at the same meeting the criteria.