论文标题

由递归塔产生的有限田中的高级元素

High Order Elements in Finite Fields Arising from Recursive Towers

论文作者

Dose, Valerio, Mercuri, Pietro, Pal, Ankan, Stirpe, Claudio

论文摘要

我们提供了一个配方,以构建塔的塔楼,该塔以$ \ mathrm {gf}(q,2^n)$,用于奇数$ q $,在$ \ mathrm {gf}(2,2 \ cdot 3^n)$中,以$ n \ ge 1 $。这些塔由$ x_ {n}^2 + x_ {n} = v(x_ {n -1})$递归获得$ \ mathrm {gf}(q,1)$和$ x_n $属于有限字段扩展$ \ mathrm {gf}(q,2^n)$,对于$ q $奇数,或to $ q $ odd,或to $ \ mathrm {gf}(2,2 \ cdot 3^n)$。进行了几个示例并进行数值分析。由$ x_n $或多项式的判别$δ_n$生成的组的下限与[BCG+09]中获得的组相似,但是在某些情况下,我们获得了更好的数值结果。

We provide a recipe to construct towers of fields producing high order elements in $\mathrm{GF}(q,2^n)$, for odd $q$, and in $\mathrm{GF}(2,2 \cdot 3^n)$, for $n \ge 1$. These towers are obtained recursively by $x_{n}^2 + x_{n} = v(x_{n - 1})$, for odd $q$, or $x_{n}^3 + x_{n} = v(x_{n - 1})$, for $q=2$, where $v(x)$ is a polynomial of small degree over the prime field $\mathrm{GF}(q,1)$ and $x_n$ belongs to the finite field extension $\mathrm{GF}(q,2^n)$, for $q$ odd, or to $\mathrm{GF}(2,2\cdot 3^n)$. Several examples are carried out and analysed numerically. The lower bounds of the orders of the groups generated by $x_n$, or by the discriminant $δ_n$ of the polynomial, are similar to the ones obtained in [BCG+09], but we get better numerical results in some cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源