论文标题

纯粹作用于双曲图的产物的小组

Groups acting purely loxodromically on products of hyperbolic graphs

论文作者

Button, J. O.

论文摘要

我们考虑具有在双曲线图的有限产物上具有行动的可数组类别,其中每个无限顺序元素都在loxodrom上起作用。当这些图是本地有限的时,我们为此子类中的组获得了强结构定理,因此映射属属的类群至少3(和$ aut(f_n)$和$ out(f_n)$(f_n)$($ n \ geq 4 $)不在此子类中。这与一般案例形成鲜明对比的是,Bestvina,Bromberg和Fujiwara表明在准列雷斯有限产品上绘制课程组的适当作用。特别是这些准列赛不能是局部有限的。

We consider the class of countable groups possessing an action on a finite product of hyperbolic graphs where every infinite order element acts loxodromically. When the graphs are locally finite, we obtain strong structure theorems for the groups in this subclass, so that mapping class groups of genus at least 3 (and $Aut(F_n)$ and $Out(F_n)$ for $n\geq 4$) are not in this subclass. This contrasts with the general case, where Bestvina, Bromberg and Fujiwara showed the existence of proper actions of mapping class groups on a finite product of quasitrees. In particular these quasitrees cannot be locally finite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源