论文标题

特征函数和零集的密度

Density of zero sets for sums of eigenfunctions

论文作者

Decio, Stefano

论文摘要

我们考虑了紧凑的Riemannian歧管$(M,G)$的Laplace-Beltrami操作员特征函数的线性组合,并研究其零集的密度属​​性。更准确地说,令$ f = \ sum_ {k = 1}^m a_k ϕ_ {λ_{j_k}} $,其中$-Δ_GDICTION_λ= λϕ_λ $。用$ z_f $表示$ f $的零集,我们表明,对于任何$ x \ in m $,$ dist(x,z_f)\ leq c(m)λ__{J_1}^{ - 1/2} $。该证明是基于对高阶椭圆pdes积极解决方案的新的积分harnack型估计。

We consider linear combinations of eigenfunctions of the Laplace-Beltrami operator on a compact Riemannian manifold $(M,g)$ and investigate a density property of their zero sets. More precisely, let $f=\sum_{k=1}^m a_k ϕ_{λ_{j_k}}$, where $-Δ_gϕ_λ=λϕ_λ$. Denoting by $Z_f$ the zero-set of $f$, we show that for any $x\in M$, $dist(x,Z_f)\leq C(m)λ_{j_1}^{-1/2}$. The proof is based on a new integral Harnack-type estimate for positive solutions of higher order elliptic PDEs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源