论文标题

低维材料中的负压电性

Negative piezoelectricity in low--dimensional materials

论文作者

Qi, Yubo, Rappe, Andrew M.

论文摘要

在这项研究中,我们通过首先执行原理计算来研究低维材料中负压电性的潜在机制。两维铁电cuinp $ _2 $ s $ _6 $详细分析为典型示例,但该理论可以应用于所有其他低维压电。类似于具有负压电响应的三维压电,在Cuinp $ _2 $ _2 $ s $ _6 $中的异常负压电电源是由于其负夹具 - 离子术语所产生的,这是无法由阳性内部应变部分补偿的。在这里,我们提出了一个更一般的规则,即在压电材料中具有负夹具 - 离子术语应该是普遍的,这归因于“ Wannier Center的滞后”效应。内部 - 应变项是由于应变而导致的结构松弛而导致的极化,主要由材料的空间结构和化学键合确定。在低维压电材料中,作为cuinp $ _2 $ s $ _6 $,内部 - 固定项大约为零。这是因为分子层的内部结构是由弱范德华相互作用键合的,对应变几乎没有反应。结果,偶极子的大小在很大程度上取决于分子层的尺寸和结构,但相对于应变的响应也很小。在低维和三维压电中,桥接内部应变响应的方程式也得出了分析表达这一点。这项工作旨在加深我们对这种异常压电效应的理解,尤其是在低维材料中,并提供了发现具有新型机电特性的材料的策略。

In this study, we investigate the underlying mechanisms of the negative piezoelectricity in low--dimensional materials by carrying out first--principles calculations. Two--dimensional ferroelectric CuInP$_2$S$_6$ is analyzed in detail as a typical example, but the theory can be applied to all other low--dimensional piezoelectrics. Similar to three--dimensional piezoelectrics with negative piezoelectric responses, the anomalous negative piezoelectricity in CuInP$_2$S$_6$ results from its negative clamped--ion term, which cannot be compensated by the positive internal strain part. Here, we propose a more general rule that having a negative clamped--ion term should be universal among piezoelectric materials, which is attributed to the "lag of Wannier center" effect. The internal--strain term, which is the change in polarization due to structural relaxation in response to strain, is mostly determined by the spatial structure and chemical bonding of the material. In a low--dimensional piezoelectric material as CuInP$_2$S$_6$, the internal--strain term is approximately zero. This is because the internal structure of the molecular layers, which are bonded by the weak van der Waals interaction, responds little to the strain. As a result, the magnitude of the dipole, which depends strongly on the dimension and structure of the molecular layer, also has a small response with respect to strain. An equation bridging the internal strain responses in low--dimensional and three--dimensional piezoelectrics is also derived to analytically express this point. This work aims to deepen our understanding about this anomalous piezoelectric effect, especially in low--dimensional materials, and provide strategies for discovering materials with novel electromechanical properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源