论文标题
奇异线性哈密顿系统的重新归一化振荡理论
Renormalized Oscillation Theory for Singular Linear Hamiltonian Systems
论文作者
论文摘要
与具有至少一个单一边界条件的一般线性汉密尔顿系统一起工作,我们表明,通过考虑与$ \ Mathbb {C}^c}^{2n} $的Lagrangian子空间相关的MASLOV索引,可以自然地以自然的方式获得重新归一化的振荡结果。这扩展了作者对常规线性汉密尔顿系统的先前工作。
Working with a general class of linear Hamiltonian systems with at least one singular boundary condition, we show that renormalized oscillation results can be obtained in a natural way through consideration of the Maslov index associated with appropriately chosen paths of Lagrangian subspaces of $\mathbb{C}^{2n}$. This extends previous work by the authors for regular linear Hamiltonian systems.