论文标题

Q状态时钟模型的准确模拟

Accurate simulation of q-state clock model

论文作者

Li, Guanrong, Pai, Kwok Ho, Gu, Zheng-Cheng

论文摘要

我们通过使用最先进的环路循环优化对张量的网络renormalzation(LOOP-TNR)算法来准确模拟平方晶格上$ q $ state时钟模型的相图和关键行为。 $ Q \ geq 5 $的两个相转换点的精度非常高。此外,通过计算共形缩放尺寸,我们能够准确地确定两个相转换点的压缩玻色子理论的压实半径$ r $。特别是,高温关键点的紧凑型半径$ r $与Berezinskii-Kosterlitz-thouless(BKT)过渡的预测$ r $完全相同。此外,我们发现,对于足够大的$ Q $,高温临界点处的固定点张量也会收敛于同一次数,而相应的运算符产品扩展(OPE)系数也可以直接从固定点tensor中直接读取。

We accurately simulate the phase diagram and critical behavior of the $q$-state clock model on the square lattice by using the state-of-the-art loop optimization for tensor network renormalzation(loop-TNR) algorithm. The two phase transition points for $q \geq 5$ are determined with very high accuracy. Furthermore, by computing the conformal scaling dimensions, we are able to accurately determine the compactification radius $R$ of the compactified boson theories at both phase transition points. In particular, the compactification radius $R$ at high-temperature critical point is precisely the same as the predicted $R$ for Berezinskii-Kosterlitz-Thouless (BKT) transition. Moreover, we find that the fixed point tensors at high-temperature critical point also converge(up to numerical errors) to the same one for large enough $q$ and the corresponding operator product expansion(OPE) coefficient of the compactified boson theory can also be read out directly from the fixed point tensor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源