论文标题

Monoclothcap:从单眼RGB视频捕捉暂时连贯的服装

MonoClothCap: Towards Temporally Coherent Clothing Capture from Monocular RGB Video

论文作者

Xiang, Donglai, Prada, Fabian, Wu, Chenglei, Hodgins, Jessica

论文摘要

我们提出了一种从单眼RGB视频输入中捕获时间连贯的动态服装变形的方法。与现有文献相反,我们的方法不需要预扫描的个性化网格模板,因此可以应用于野外视频。为了将输出限制为有效的变形空间,我们为三种服装构建统计变形模型:T恤,短裤和长裤。通过最大程度地减少轮廓,分割和纹理的差异,可以利用一个可区分的渲染器将捕获的形状与输入帧保持一致。我们开发了一种紫外线纹理生长方法,该方法依次扩大衣服的可见纹理区域,以最大程度地减少变形跟踪中的漂移。我们还通过将衣服的表面拟合到卷积神经网络估计的正常地图中,从输入视频中提取细粒度的皱纹细节。我们的方法从单眼视频中产生了身体和衣服的时间连贯的重建。我们展示了来自各种具有挑战性的视频的成功捕获捕获的结果。广泛的定量实验证明了我们方法对指标的有效性,包括身体姿势误差和衣服的表面重建误差。

We present a method to capture temporally coherent dynamic clothing deformation from a monocular RGB video input. In contrast to the existing literature, our method does not require a pre-scanned personalized mesh template, and thus can be applied to in-the-wild videos. To constrain the output to a valid deformation space, we build statistical deformation models for three types of clothing: T-shirt, short pants and long pants. A differentiable renderer is utilized to align our captured shapes to the input frames by minimizing the difference in both silhouette, segmentation, and texture. We develop a UV texture growing method which expands the visible texture region of the clothing sequentially in order to minimize drift in deformation tracking. We also extract fine-grained wrinkle detail from the input videos by fitting the clothed surface to the normal maps estimated by a convolutional neural network. Our method produces temporally coherent reconstruction of body and clothing from monocular video. We demonstrate successful clothing capture results from a variety of challenging videos. Extensive quantitative experiments demonstrate the effectiveness of our method on metrics including body pose error and surface reconstruction error of the clothing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源