论文标题

可定义的Eilenberg--Mac Lane通用系数定理

Definable Eilenberg--Mac Lane Universal Coefficient Theorems

论文作者

Lupini, Martino

论文摘要

我们证明了Eilenberg--Mac Lane的通用系数定理的可定义版本,这些版本在其整体共同体学组方面表达了一个紧凑的Metrizable空间的(Steenrod)同源性组,以及(CHECH)共同同源物组的多面体组的(čech)共同体学组。确切地说,我们表明,考虑到一个可固定的$ x $,A(不一定是紧凑的)多面体$ y $,以及带有分区关闭属性的Abelian Polish Group $ g $,有自然的确切序列\ Begin {equination*} 0 \ rightArrow \ rightArrow \ rightArrow \ rightrm {ext} ext} \ ext} \ ext} \ weft(ext) h_ {n}(x; g)\ rightarrow \ mathrm {hom} \ left(h^{n}(x)(x),g \ right)\ rightArrow 0 \ end {equation*}和\ begin {equination*} 0 \ rightArrow \ rightArrow \ rightArrow \ rightarrow \ mathrm {ext} h^{n}(y; g)\ rightarrow \ mathrm {hom} \ left(h_ {n}(y),g \ right)\ rightarrow 0 \ end {equation {equation {equation {equation*},它一定会拆分,其中$ h_ {n}(n}(x; g)$是$ n $ dimdimenable $ n $ dimdimenable $ $ x $ $ x $ $ x $ x $ x $ x $ x $ x $ h^{n}(y; g)$是$ n $二维的$ y $ $ y $的可确定的共同体,并带有$ g $的系数。 这两个结果均以一般代数通用系数定理的推论获得,该定理将可数的自由Abelian群体的Cochain复合物与波兰群体的$ G $双链链复合物的可确定同源性相关联。

We prove definable versions of the Universal Coefficient Theorems of Eilenberg--Mac Lane expressing the (Steenrod) homology groups of a compact metrizable space in terms of its integral cohomology groups, and the (Čech) cohomology groups of a polyhedron in terms of its integral homology groups. Precisely, we show that, given a compact metrizable space $X$, a (not necessarily compact) polyhedron $Y$, and an abelian Polish group $G$ with the division closure property, there are natural definable exact sequences \begin{equation*} 0\rightarrow \mathrm{Ext}\left( H^{n+1}(X),G\right) \rightarrow H_{n}(X;G)\rightarrow \mathrm{Hom}\left( H^{n}(X),G\right) \rightarrow 0 \end{equation*} and \begin{equation*} 0\rightarrow \mathrm{Ext}\left( H_{n-1}(Y),G\right) \rightarrow H^{n}(Y;G)\rightarrow \mathrm{Hom}\left( H_{n}(Y),G\right) \rightarrow 0 \end{equation*} which definably split, where $H_{n}(X;G)$ is the $n$-dimensional definable homology group of $X$ with coefficients in $G$ and $H^{n}(Y;G)$ is the $n$ -dimensional definable cohomology group of $Y$ with coefficients in $G$. Both of these results are obtained as corollaries of a general algebraic Universal Coefficient Theorem relating the cohomology of a cochain complex of countable free abelian groups to the definable homology of its $G$-dual chain complex of Polish groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源