论文标题

广义棋盘矩阵合奏的限制频谱测度

The limiting spectral measure for an ensemble of generalized checkerboard matrices

论文作者

Chen, Fangu, Yu, Jiahui, Miller, Steven J., Lin, Yuxin

论文摘要

随机矩阵理论成功地模拟了许多系统,从重核的能级到$ L $ functions的零。尽管所研究的大多数合奏都具有连续的光谱分布,但Burkhardt等人引入了$ k $ -Checkerboard矩阵的合奏,这是Wigner矩阵的变体,其中具有固定和恒定的通用棋盘格式的条目。在这个家庭中,特征值的$ n-k $具有$ o(\ sqrt {n})$的尺寸,被称为散装,而其余的则与$ n $的倍数紧密相连,称为blip。 我们通过允许固定条目采用不同的恒定值来扩展他们的工作。我们可以在我们想要的任何倍数的$ n $倍数上使用Blip特征值构建合奏(因此,我们可以将BLIP在Primes或fibonaccis等序列上发生)。多个Blip的存在会带来技术挑战以将它们分开,并一次仅查看一个Blip。我们通过选择合适的重量函数来克服这一点,该功能使我们可以在每个BLIP处进行定位,然后利用取消来处理所得组合物以确定集合的平均矩;然后,我们采用标准方法从概率中使用,以证明矩阵的限制分布会融合到平均行为,因为矩阵大小趋向于无穷大。对于只有一个特征值的Blips,我们会汇合到Dirac Delta Spike,而如果blip中有$ k $ eigenvalues,我们再次获得空心$ k \ times k $ goe行为。

Random matrix theory successfully models many systems, from the energy levels of heavy nuclei to zeros of $L$-functions. While most ensembles studied have continuous spectral distribution, Burkhardt et al introduced the ensemble of $k$-checkerboard matrices, a variation of Wigner matrices with entries in generalized checkerboard patterns fixed and constant. In this family, $N-k$ of the eigenvalues are of size $O(\sqrt{N})$ and were called bulk while the rest are tightly contrained around a multiple of $N$ and were called blip. We extend their work by allowing the fixed entries to take different constant values. We can construct ensembles with blip eigenvalues at any multiples of $N$ we want with any multiplicity (thus we can have the blips occur at sequences such as the primes or the Fibonaccis). The presence of multiple blips creates technical challenges to separate them and to look at only one blip at a time. We overcome this by choosing a suitable weight function which allows us to localize at each blip, and then exploiting cancellation to deal with the resulting combinatorics to determine the average moments of the ensemble; we then apply standard methods from probability to prove that almost surely the limiting distributions of the matrices converge to the average behavior as the matrix size tends to infinity. For blips with just one eigenvalue in the limit we have convergence to a Dirac delta spike, while if there are $k$ eigenvalues in a blip we again obtain hollow $k \times k$ GOE behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源