论文标题
通过防绝热驱动破坏时间反转对称性的最佳能量转换
Optimal energy conversion through anti-adiabatic driving breaking time-reversal symmetry
论文作者
论文摘要
从Carnot发动机开始,加热发动机的理想效率与准静态转换和消失的小输出功率有关。在这里,我们精确地计算了等温热发动机的热力学特性,其中工作介质是一种定期驱动的谐波振荡器,而是将重点放在相反的反糖化极限上,其中循环的周期是问题中最快的时间尺度。我们表明,在这个限制中,有可能接近理想的能量转换效率$η= 1 $,并具有有限的输出功率和消失的相对功率波动。由于时间反转对称性的破坏,可以同时实现加热发动机的所有三个Desiderata。我们还表明,非马克维亚动态可以进一步改善发电效率的权衡。
Starting with Carnot engine, the ideal efficiency of a heat engine has been associated with quasi-static transformations and vanishingly small output power. Here, we exactly calculate the thermodynamic properties of a isothermal heat engine, in which the working medium is a periodically driven underdamped harmonic oscillator, focusing instead on the opposite, anti-adiabatic limit, where the period of a cycle is the fastest time scale in the problem. We show that in that limit it is possible to approach the ideal energy conversion efficiency $η=1$, with finite output power and vanishingly small relative power fluctuations. The simultaneous realization of all the three desiderata of a heat engine is possible thanks to the breaking of time-reversal symmetry. We also show that non-Markovian dynamics can further improve the power-efficiency trade-off.