论文标题

来自非物理学的机器学习物理学:从缩放窗口外部找到晶格阳米尔斯理论中的脱浓度温度

Machine-learning physics from unphysics: Finding deconfinement temperature in lattice Yang-Mills theories from outside the scaling window

论文作者

Boyda, D. L., Chernodub, M. N., Gerasimeniuk, N. V., Goy, V. A., Liubimov, S. D., Molochkov, A. V.

论文摘要

我们研究了应用于晶格规理论的临界行为的机器学习技术,尤其是SU(2)和SU(3)量规理论中的限制/解次化相变。我们发现,以晶格参数的非物理值作为输入,对仪表字段的晶格配置进行了训练,构建了量规不变函数,并发现与可观察到的目标可观察到的相关性,该目标在参数空间的物理区域中有效。特别是,如果该算法旨在将Polyakov环作为脱卷阶参数预测,则它会在时间方向上沿封闭环沿封闭环构建轨迹组矩阵的轨迹。结果,以晶格耦合$β$的一个非物理值训练的神经网络可预测$β$值的整个区域中的顺序参数。因此,我们证明了机器学习技术可以用作分析延续的数值类似物,从易于访问但在物理上无趣的区域到有趣但可能无法访问的区域。

We study the machine learning techniques applied to the lattice gauge theory's critical behavior, particularly to the confinement/deconfinement phase transition in the SU(2) and SU(3) gauge theories. We find that the neural network, trained on lattice configurations of gauge fields at an unphysical value of the lattice parameters as an input, builds up a gauge-invariant function, and finds correlations with the target observable that is valid in the physical region of the parameter space. In particular, if the algorithm aimed to predict the Polyakov loop as the deconfining order parameter, it builds a trace of the gauge group matrices along a closed loop in the time direction. As a result, the neural network, trained at one unphysical value of the lattice coupling $β$ predicts the order parameter in the whole region of the $β$ values with good precision. We thus demonstrate that the machine learning techniques may be used as a numerical analog of the analytical continuation from easily accessible but physically uninteresting regions of the coupling space to the interesting but potentially not accessible regions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源