论文标题

几乎没有局部样式表示和分解的字体生成

Few-shot Font Generation with Localized Style Representations and Factorization

论文作者

Park, Song, Chun, Sanghyuk, Cha, Junbum, Lee, Bado, Shim, Hyunjung

论文摘要

自动射击字体生成是一个实用且研究广泛的问题,因为手动设计对设计师的专业知识昂贵且敏感。现有的少数字体生成方法旨在学习将样式和内容元素与几个参考字形分开,并主要关注每种字体样式的通用样式表示。但是,这种方法将模型限制在代表各种本地样式的情况下,因此使其不适合最复杂的字母系统,例如中文,其字符由具有高度复杂结构的各种组件(通常称为“激进”)组成。在本文中,我们通过学习局部样式(即组件样式表示)而不是通用样式提出了一种新颖的字体生成方法。提出的样式表示使我们能够在文本设计中综合复杂的本地细节。但是,仅从参考字形的学习组件样式就在几个镜头字体生成的情况下是不可行的,而目标脚本具有大量组件,例如中文的200多个组件,例如200多个。为了减少参考字形的数量,我们以低级别矩阵分数的启发来简化组件因子和样式因子的乘积来简化组件样式。由于强大的表示和紧凑的分解策略的结合,我们的方法比其他最先进的方法表现出比其他最先进的局部范围的射击字体生成结果(仅具有8个参考图像),而没有使用强大的局部性监督,例如每个组件,骨架或笔触的位置。源代码可在https://github.com/clovaai/lffont上找到。

Automatic few-shot font generation is a practical and widely studied problem because manual designs are expensive and sensitive to the expertise of designers. Existing few-shot font generation methods aim to learn to disentangle the style and content element from a few reference glyphs, and mainly focus on a universal style representation for each font style. However, such approach limits the model in representing diverse local styles, and thus makes it unsuitable to the most complicated letter system, e.g., Chinese, whose characters consist of a varying number of components (often called "radical") with a highly complex structure. In this paper, we propose a novel font generation method by learning localized styles, namely component-wise style representations, instead of universal styles. The proposed style representations enable us to synthesize complex local details in text designs. However, learning component-wise styles solely from reference glyphs is infeasible in the few-shot font generation scenario, when a target script has a large number of components, e.g., over 200 for Chinese. To reduce the number of reference glyphs, we simplify component-wise styles by a product of component factor and style factor, inspired by low-rank matrix factorization. Thanks to the combination of strong representation and a compact factorization strategy, our method shows remarkably better few-shot font generation results (with only 8 reference glyph images) than other state-of-the-arts, without utilizing strong locality supervision, e.g., location of each component, skeleton, or strokes. The source code is available at https://github.com/clovaai/lffont.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源