论文标题
关于近似多项式季节调节剂问题
On Approximating Polynomial-Quadratic Regulator Problems
论文作者
论文摘要
涉及自主多项式系统的反馈控制问题很普遍,但是有限的算法和软件可用于近似其解决方案。本文通过考虑调节器问题的特殊情况,即状态方程具有多项式非线性,控制成本是二次,并且反馈控制由低度多项式近似。由于这代表了线性季节调节器(LQR)和二次季节调节剂(QQR)问题的自然扩展,因此我们将此类表示为多项式 - 季度调节剂(PQR)问题。目前的方法适合具有低度多项式的反馈近似值和适度模型维度的问题。使用现代模型减少方法可以在许多问题中实现此设置。 Al'brekht算法应用于表示为Kronecker产品的多项式非线性时,会导致优雅的配方。反馈控制的术语导致大型线性系统可以通过Bartels-Stewart算法的N向概括有效地解决。我们使用包括Lorenz方程,范德波尔振荡器的环和汉堡方程的离散版本的数值示例演示了我们的算法。此处描述的软件可在GitHub上找到。
Feedback control problems involving autonomous polynomial systems are prevalent, yet there are limited algorithms and software for approximating their solution. This paper represents a step forward by considering the special case of the regulator problem where the state equation has polynomial nonlinearity, control costs are quadratic, and the feedback control is approximated by low-degree polynomials. As this represents the natural extension of the linear-quadratic regulator (LQR) and quadratic-quadratic regulator (QQR) problems, we denote this class as polynomial-quadratic regulator (PQR) problems. The present approach is amenable to feedback approximations with low degree polynomials and to problems of modest model dimension. This setting can be achieved in many problems using modern model reduction methods. The Al'Brekht algorithm, when applied to polynomial nonlinearities represented as Kronecker products leads to an elegant formulation. The terms of the feedback control lead to large linear systems that can be effectively solved with an N-way generalization of the Bartels-Stewart algorithm. We demonstrate our algorithm with numerical examples that include the Lorenz equations, a ring of van der Pol oscillators, and a discretized version of the Burgers equation. The software described here is available on Github.