论文标题

光滑的涂鸦组,I:几何化Kummer理论

Smooth profinite groups, I: geometrizing Kummer theory

论文作者

De Clercq, Charles, Florence, Mathieu

论文摘要

在这一系列的三篇论文中,我们介绍和研究了循环组合对和光滑的涂鸦基团。它们是针对田野的Kummer理论的几何公理化,其系数为$ p $ - 统一的基础,用于主要$ p $。这些系数增强了,以$ g $ linearized的线条束,超过$ g $ $ $ p $。在第二篇论文中,该升级将进一步推向方案理论环境。 在第一篇文章中,我们介绍了循环型对,光滑的涂鸦组和$(g,s)$ - 协同学。我们证明了第一个以$ g $线性的托架为单位捆绑的抬起定理(定理A)。在第二篇文章中开发的代数几何工具的帮助下,这种形式主义是在第三篇中应用的,以证明平滑度定理,其本质如下所示。令$ g $为涂鸦集团。假设,对于每个开放子组$ h \ subset g $,对于$ n = 1 $,天然箭头$ h^n(h,\ m athbb {z}/p^2)\ to h^n(h,\ mathbb {z}/p)$是支流的。然后,对于每个这样的$ h $,也是每个$ n \ geq 2 $的汇总。适用于绝对Galois群体的平滑度定理提供了一种新的证据,证明了标准残基同构定理,这完全是与动机共同体脱节的。

In this series of three papers, we introduce and study cyclotomic pairs and smooth profinite groups. They are a geometric axiomatisation of Kummer theory for fields, with coefficients $p$-primary roots of unity, for a prime $p$. These coefficients are enhanced, to $G$-linearized line bundles in Witt vectors, over $G$-schemes of characteristic $p$. In the second paper, this upgrade is pushed even further, to the scheme-theoretic setting. In this first article, we introduce cyclotomic pairs, smooth profinite groups and $(G,S)$-cohomology. We prove a first lifting theorem for $G$-linearized torsors under line bundles (Theorem A). With the help of the algebro-geometric tools developed in the second article, this formalism is applied in the third one, to prove the Smoothness Theorem, whose essence reads as follows. Let $G$ be profinite group. Assume that, for every open subgroup $H \subset G$, and for $n=1$, the natural arrow $H^n(H,\mathbb{Z}/p^2) \to H^n(H,\mathbb{Z}/p)$ is surjective. Then, it is also surjective for every such $H$, and every $n \geq 2$. Applied to absolute Galois groups, the Smoothness Theorem provides a new proof of the Norm Residue Isomorphism Theorem, entirely disjoint from motivic cohomology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源